Skip to main content
Log in

Synthesis of soluble poly(azomethine)s containing thiophene and their fluorescence quantum yields

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, poly(azomethine)s containing thiophene unit and with pyridine, oxygen and sulfur bridges are synthesized via the condensation reaction at the organic medium. The obtained compounds were structurally clarified by Fourier-transform infrared, ultraviolet–visible and nuclear magnetic resonance (1H, 13C NMR) spectroscopic techniques. Replies of optic and electronic excitation were getting and utilized by photoluminescence (PL) spectroscopy and cyclic voltammetry techniques. In addition, thermal characteristics were obtained by thermogravimetric/differential thermal analyses and differential scanning calorimetry analysis. Photochromic properties and quantum yields were particularly examined by PL spectroscopy. In particular, P-ThPy compound has multicolor emissions and high quantum yields in DMF and EtOH solvents. It has five colors such as blue (excited at 340, 360, 380, 400, 420, 440 nm), green (460 nm), yellow (480 nm), orange (500 nm) and red (520 nm) emissions in DMF solvent. Additionally, it determined two different colors, blue (320, 340, 360, 380, 400, 420, 440, 460 nm) and yellow (480 nm) emissions in EtOH solvent. The quantum yields of P-ThPy were found as 19.6% and 22.1% and 9.0%, 11.0% in DMF and EtOH solvents, respectively, when excited at 460, 480 nm for DMF and at 420, 460 nm for EtOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ansari MO, Khan MM, Ansari SA, Cho MH (2015) Polythiophene nanocomposites for photodegradation applications: past, present and future. J Saudi Chem Soc 19:494–504. https://doi.org/10.1016/j.jscs.2015.06.004

    Article  Google Scholar 

  2. Ai L, Liu Y, Zhang XY et al (2014) A facile and template-free method for preparation of polythiophene microspheres and their dispersion for waterborne corrosion protection coatings. Synth Met 191:41–46. https://doi.org/10.1016/j.synthmet.2014.02.004

    Article  CAS  Google Scholar 

  3. An C, Marszalek T, Guo X et al (2015) Tuning the optoelectronic properties of dual-acceptor based low-bandgap ambipolar polymers by changing the thiophene-bridge length. Polym Chem 6:6238–6245. https://doi.org/10.1039/C5PY00802F

    Article  CAS  Google Scholar 

  4. Khalid H, Wang L, Yu H et al (2015) Synthesis of soluble ferrocene-based polythiophenes and their properties. J Inorg Organomet Polym Mater 25:1511–1520. https://doi.org/10.1007/s10904-015-0270-x

    Article  CAS  Google Scholar 

  5. Kosaka T, Ube T, Haga MA, Ikeda T (2015) Synthesis of polythiophene with a photo-crosslinkable side chain. Mol Cryst Liq Cryst 617:67–72. https://doi.org/10.1080/15421406.2015.1075826

    Article  CAS  Google Scholar 

  6. Kuwabara J, Yamazaki K, Yamagata T et al (2015) The effect of a solvent on direct arylation polycondensation of substituted thiophenes. Polym Chem 6:891–895. https://doi.org/10.1039/C4PY01387E

    Article  CAS  Google Scholar 

  7. Lee I-H, Amaladass P, Choi T-L (2014) One-pot synthesis of nanocaterpillar structures via in situ nanoparticlization of fully conjugated poly(p-phenylene)-block-polythiophene. Chem Commun 50:7945–7948. https://doi.org/10.1039/C4CC02787F

    Article  CAS  Google Scholar 

  8. Li W, Guo Y, Shi J et al (2016) Solution-processable neutral green electrochromic polymer containing thieno[3,2-b]thiophene derivative as unconventional donor units. Macromolecules 49:7211–7219. https://doi.org/10.1021/acs.macromol.6b01624

    Article  CAS  Google Scholar 

  9. Massoumi B, Jaymand M (2016) Nanostructured star-shaped polythiophene with tannic acid core: synthesis, characterization, and its physicochemical properties. J Appl Polym Sci 133:1–11. https://doi.org/10.1002/app.43513

    Article  CAS  Google Scholar 

  10. Schroot R, Jäger M, Schubert US (2017) Synthetic approaches towards structurally-defined electrochemically and (photo)redox-active polymer architectures. Chem Soc Rev 46:2754–2798. https://doi.org/10.1039/C6CS00811A

    Article  CAS  PubMed  Google Scholar 

  11. Smith ZC, Meyer DM, Simon MG et al (2015) Thiophene-based conjugated polymers with photolabile solubilizing side chains. Macromolecules 48:959–966. https://doi.org/10.1021/ma502289n

    Article  CAS  Google Scholar 

  12. Swathy TS, Jose MA, Antony MJ (2016) AOT assisted preparation of ordered, conducting and dispersible core-shell nanostructured polythiophene—MWCNT nanocomposites. Polym (United Kingdom) 103:206–213. https://doi.org/10.1016/j.polymer.2016.09.047

    Article  CAS  Google Scholar 

  13. Tao Y, Zhang K, Zhang C et al (2016) Electrochemical synthesis of copolymers based on 2-(anthracen-9-yl)thiophene: a facile and efficient route to a series of multicolor electrochromic polymers. Mater Sci Semicond Process 56:66–75. https://doi.org/10.1016/j.mssp.2016.07.019

    Article  CAS  Google Scholar 

  14. Bora C, Sarkar C, Mohan KJ, Dolui S (2015) Polythiophene/graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells. Electrochim Acta 157:225–231. https://doi.org/10.1016/j.electacta.2014.12.164

    Article  CAS  Google Scholar 

  15. Tu MC, Svm HK, Thilini A et al (2017) Tuning pendant groups of polythiophene on carbon nanotubes for vapour classification. Sens Actuators B Chem 247:916–922. https://doi.org/10.1016/j.snb.2017.03.095

    Article  CAS  Google Scholar 

  16. Vázquez-Arce A, Zaragoza-Galán G, Aguilar-Ortíz E et al (2014) Luminescent polythiophenes-containing porphyrin units: synthesis, characterization, and optical properties. Des Monomers Polym 17:78–88. https://doi.org/10.1080/15685551.2013.840477

    Article  CAS  Google Scholar 

  17. Wang L, Yin L, Ji C, Li Y (2015) Tuning the photovoltaic performance of BT-TPA chromophore based solution-processed solar cells through molecular design incorporating of bithiophene unit and fluorine-substitution. Dye Pigment 118:37–44. https://doi.org/10.1016/j.dyepig.2015.02.017

    Article  CAS  Google Scholar 

  18. Wang X, Wang K, Wang M (2015) Synthesis of conjugated polymers via an exclusive direct-arylation coupling reaction: a facile and straightforward way to synthesize thiophene-flanked benzothiadiazole derivatives and their copolymers. Polym Chem 6:1846–1855. https://doi.org/10.1039/C4PY01627K

    Article  CAS  Google Scholar 

  19. Wu F, Chen S, Chen L, Chen Y (2015) Tuning joint sequence for donor-acceptor polymers based on fluorinated benzothiadiazole with thiophene/furan bridecakes. Polym (United Kingdom) 78:154–160. https://doi.org/10.1016/j.polymer.2015.09.066

    Article  CAS  Google Scholar 

  20. Zhang H, Li S, Xu B et al (2016) Fullerene-free polymer solar cell based on a polythiophene derivative with an unprecedented energy loss of less than 0.5 eV. J Mater Chem A 4:18043–18049. https://doi.org/10.1039/C6TA07672F

    Article  CAS  Google Scholar 

  21. Zhang S, Qin Y, Uddin MA et al (2016) A fluorinated polythiophene derivative with stabilized backbone conformation for highly efficient fullerene and non-fullerene polymer solar cells. Macromolecules 49:2993–3000. https://doi.org/10.1021/acs.macromol.6b00248

    Article  CAS  Google Scholar 

  22. Zhou Y, Liu F, Wu H et al (2015) Synthesis and characterization of polythiophenes bearing diphenyl groups in the conjugated chain. J Wuhan Univ Technol Mater Sci Ed 30:568–573. https://doi.org/10.1007/s11595-015-1190-x

    Article  CAS  Google Scholar 

  23. Zhu M, Li W, Xu P et al (2015) Thiophene-based microporous polymer networks via chemical or electrochemical oxidative coupling. Chem Mater 26:4599–4602. https://doi.org/10.1016/j.matchemphys.2014.03.054

    Article  CAS  Google Scholar 

  24. Castillo-Martínez E, Carretero-González J, Armand M (2014) Polymeric Schiff bases as low-voltage redox centers for sodium-ion batteries. Angew Chemie Int Ed 53:5341–5345. https://doi.org/10.1002/anie.201402402

    Article  CAS  Google Scholar 

  25. Chen S, Liu Z, Ge Z (2016) Synthesis, characterization and photovoltaic properties of three new 3,4-dithienyl-substituted polythiophene derivatives. Polym J 48:101–110. https://doi.org/10.1038/pj.2015.85

    Article  CAS  Google Scholar 

  26. Cinar ME, Ozturk T (2015) Thienothiophenes, dithienothiophenes, and thienoacenes: syntheses, oligomers, polymers, and properties. Chem Rev 115:3036–3140. https://doi.org/10.1021/cr500271a

    Article  CAS  PubMed  Google Scholar 

  27. Collado-Fregoso E, Boufflet P, Fei Z et al (2015) Increased exciton dipole moment translates into charge-transfer excitons in thiophene-fluorinated low-band gap polymers for organic photovoltaic applications. Chem Mater 27:7934–7944. https://doi.org/10.1021/acs.chemmater.5b02948

    Article  CAS  Google Scholar 

  28. Das S, Chatterjee DP, Ghosh R, Nandi AK (2015) Water soluble polythiophenes: preparation and applications. RSC Adv 5:20160–20177. https://doi.org/10.1039/C4RA16496B

    Article  CAS  Google Scholar 

  29. Jaymand M, Hatamzadeh M, Omidi Y (2015) Modification of polythiophene by the incorporation of processable polymeric chains: recent progress in synthesis and applications. Prog Polym Sci 47:26–69. https://doi.org/10.1016/j.progpolymsci.2014.11.004

    Article  CAS  Google Scholar 

  30. Kadac K, Nowaczyk J (2016) Polythiophene nanoparticles in aqueous media. J Appl Polym Sci 133:1–10. https://doi.org/10.1002/app.43495

    Article  CAS  Google Scholar 

  31. Matsumura A, Kawabata K, Goto H (2015) Synthesis, properties, and doping behavior of optically active polythiophenes bearing a bornyl group. Macromol Chem Phys 216:931–938. https://doi.org/10.1002/macp.201400594

    Article  CAS  Google Scholar 

  32. Guo C, Jiang S, Zhu W et al (2015) Polythiophene based fluorescent probe for copper ions with high sensitivity. J Appl Polym Sci 132:1–7. https://doi.org/10.1002/app.42440

    Article  CAS  Google Scholar 

  33. Kobzar YL, Tkachenko IM, Bliznyuk VN et al (2016) Synthesis and characterization of fluorinated poly(azomethine ether)s from new core-fluorinated azomethine-containing monomers. Des Monomers Polym 19:1–11. https://doi.org/10.1080/15685551.2015.1092007

    Article  CAS  Google Scholar 

  34. Lim WL, Oo CW, Choo YSL, Looi ST (2015) New generation of photosensitive poly(azomethine)esters: thermal behaviours, photocrosslinking and photoluminescence studies. Polym (United Kingdom) 71:15–22. https://doi.org/10.1016/j.polymer.2015.06.041

    Article  CAS  Google Scholar 

  35. Yeh LC, Huang TC, Lai FY et al (2016) Synthesis of electroactive polyazomethine and its application in electrochromic property and electrochemical sensor. Surf Coat Technol 303:154–161. https://doi.org/10.1016/j.surfcoat.2016.03.094

    Article  CAS  Google Scholar 

  36. Iwan A (2015) An overview of LC polyazomethines with aliphatic-aromatic moieties: thermal, optical, electrical and photovoltaic properties. Renew Sustain Energy Rev 52:65–79. https://doi.org/10.1016/j.rser.2015.07.078

    Article  CAS  Google Scholar 

  37. Iwan A, Boharewicz B, Tazbir I et al (2015) New environmentally friendly polyazomethines with thiophene rings for polymer solar cells. Sol Energy 117:246–259. https://doi.org/10.1016/j.solener.2015.03.051

    Article  CAS  Google Scholar 

  38. Kaya I, Çulhaoǧlu S (2012) Syntheses and characterizations of oligo(azomethine ether)s derived from 2,2′-[1,4-enylenebis(methyleneoxy)]dibenzaldehyde and 2,2′-[1,2- phenylenebis(methyleneoxy)]dibenzaldehyde. Chin J Polym Sci (English Ed) 30:682–693. https://doi.org/10.1007/s10118-012-1143-1

    Article  CAS  Google Scholar 

  39. Iwan A, Schab-Balcerzak E, Pociecha D et al (2011) Characterization, liquid crystalline behavior, electrochemical and optoelectrical properties of new poly(azomethine)s and a poly(imide) with siloxane linkages. Opt Mater (Amst) 34:61–74. https://doi.org/10.1016/j.optmat.2011.07.004

    Article  CAS  Google Scholar 

  40. Zhu M, Li W, Xu P et al (2017) Molecular engineering tuning optoelectronic properties of thieno[3,2-b]thiophenes-based electrochromic polymers. Sci China Chem 60:63–76. https://doi.org/10.1007/s11426-016-0305-9

    Article  CAS  Google Scholar 

  41. Zhang M, Guo X, Ma W et al (2014) A polythiophene derivative with superior properties for practical application in polymer solar cells. Adv Mater 26:5880–5885. https://doi.org/10.1002/adma.201401494

    Article  CAS  PubMed  Google Scholar 

  42. Massoumi B, Jaymand M (2016) Chemical and electrochemical grafting of polythiophene onto poly(methyl methacrylate), and its electrospun nanofibers with gelatin. J Mater Sci: Mater Electron 27:12803–12812. https://doi.org/10.1007/s10854-016-5413-5

    Article  CAS  Google Scholar 

  43. Jeong S, Lee D, Kim JK, Jang D-J (2017) A colloidal system of polythiophene-grafted edge-gold-coated silver nanoprisms with enhanced optical properties and stability. New J Chem 41:160–167. https://doi.org/10.1039/C6NJ02868C

    Article  CAS  Google Scholar 

  44. González-Juárez E, Güizado-Rodríguez M, Barba V et al (2016) Polythiophenes based on pyrene as pendant group: synthesis, structural characterization and luminescent properties. J Mol Struct 1103:25–34. https://doi.org/10.1016/j.molstruc.2015.09.011

    Article  CAS  Google Scholar 

  45. Castrellon-Uribe J, Güizado-Rodríguez M, Espíndola-Rivera R (2016) Photoluminescence analysis of a polythiophene derivative: concentration and temperature effects. Opt Mater (Amst) 58:93–101. https://doi.org/10.1016/j.optmat.2016.03.049

    Article  CAS  Google Scholar 

  46. Cai Y, Gao Y, Luo Q et al (2016) Ferrocene-grafted photochromic triads based on a sterically hindered ethene bridge: redox-switchable fluorescence and gated photochromism. Adv Opt Mater 4:1410–1416. https://doi.org/10.1002/adom.201600229

    Article  CAS  Google Scholar 

  47. Kaya İ, Aytan B, Senol D (2018) Syntheses of poly(phenoxy-imine)s anchored with carboxyl group: characterization and photovoltaic studies. Opt Mater 78:421–431. https://doi.org/10.1016/j.optmat.2018.02.057

    Article  CAS  Google Scholar 

  48. Deckers S, Steverlynck J, Willot P et al (2015) Regioregularity increases second-order nonlinear optical response of polythiophenes in solution. J Phys Chem C 119:18513–18517. https://doi.org/10.1021/acs.jpcc.5b02104

    Article  CAS  Google Scholar 

  49. He B, Pun AB, Klivansky LM et al (2014) Thiophene fused azacoronenes: regioselective synthesis, self-organization, charge transport and its incorporation in conjugated polymers. Chem Mater 26:3920–3927. https://doi.org/10.1021/cm5018272

    Article  CAS  Google Scholar 

  50. Hsiow CY, Wang HY, Lin YH et al (2016) Synthesis and characterization of two-dimensional conjugated polymers incorporating electron-deficient moieties for application in organic photovoltaics. Polymers (Basel). https://doi.org/10.3390/polym8110382

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmet Kaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temizkan, K., Kaya, İ. Synthesis of soluble poly(azomethine)s containing thiophene and their fluorescence quantum yields. Polym. Bull. 77, 3287–3303 (2020). https://doi.org/10.1007/s00289-019-02911-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02911-y

Keywords

Navigation