Skip to main content
Log in

Fluorescence and photon transmission techniques for studying film formation from PS/GO nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Steady-state fluorescence and UV–Vis techniques were used to study the film formation behavior of composites consisting of pyrene (P)-labeled polystyrene (PS) latex and graphene oxide (GO) in terms of PS latex/GO volume fraction. PS/GO composite films were prepared on glass substrates with different volume fractions of PS and GO using the drop casting method at room temperature. The film formation behavior of these composites was studied by annealing them at a temperature range of 100–300 °C and monitoring the scattered light intensity (Isc), fluorescence intensity (IP) from P and transmitted light intensity (Itr) through the films after each annealing step. The optical results indicate that PS/GO composites showed complete film formation independent of GO volume fraction. The morphological changes in the films were also found to be in consistent with these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mohammadi N, Klein A, Sperling LH (1993) Polymer chain rupture and the fracture behavior of glassy polystyrene. Macromolecules 26:1019

    CAS  Google Scholar 

  2. Sambasivan M, Sperling LH, Klein A (1995) Energy-consuming micromechanisms in the fracture of glassy polymers. 2. Effect of molecular weight on the fracture of polystyrene. Macromolecules 28:152

    Google Scholar 

  3. Pekcan O, Arda E, Kesenci K, Piskin E (1998) Photon transmission technique for studying film formation from polystyrene latexes prepared by dispersion polymerization using various steric stabilizers. J Appl Polym Sci 68:1257

    CAS  Google Scholar 

  4. Sambasivan M, Klein A, Sperling LH (1995) The molecular basis of fracture in polystyrene films: role of molecular weight. J Appl Polym, Sci

    Google Scholar 

  5. Wang Y, Winnik MA (1993) Polymer diffusion across interfaces in latex films. J Phys Chem 97:2507

    CAS  Google Scholar 

  6. Canpolat M, Pekcan O (1995) Photon diffusion study in films formed from high-T latex particle. Polymer 36:4433

    CAS  Google Scholar 

  7. Canpolat M, Pekcan O (1995) Healing and interdiffusion processes at particle–particle junction during film formation from high-T latex particles. Polymer 36:2025

    CAS  Google Scholar 

  8. Pekcan O, Canpolat M (1996) The effect of solid content on latex coalescence and film formation: steady-state energy transfer study with fluorescence labeled polymers. J Appl Polym Sci 59:1699

    Google Scholar 

  9. Winnik MA (1997) Latex film formation. Curr Opin Colloid Interface Sci 2(2):192

    CAS  Google Scholar 

  10. Toussaint A, Wilde MD (1997) A comprehensive model of sintering and coalescence of unpigmented latexes. Prog Org Coat 30:113

    CAS  Google Scholar 

  11. Croll SG (1986) Drying of latex paint. J Coat Technol 58(734):41

    CAS  Google Scholar 

  12. Provder T, Winnik MA, Urban MW (1996) Film formation in waterborne Coatings. In: ACS symposium American chemical society series 648, p 332

  13. Sperry PR, Synder BS, O’Dowd ML, Lesko PM (1994) Role of water in particle deformation and compaction in latex film formation. Langmuir 10(8):2619

    CAS  Google Scholar 

  14. Mackenzie JK, Shuttleworth R (1949) A phenomenological theory of sintering. Proc Phys Soc B 62(12):838

    Google Scholar 

  15. Mazur S (1995) Coalescence of polymer particles. In: Rosenweig N (ed) Polymer powder processing. Wiley, Chister

    Google Scholar 

  16. Pekcan O, Arda E (1999) Void closure and interdiffusion in latex film formation by photon transmission and fluorescence methods. Colloids Surf A Physicochem Eng Asp 153:537

    CAS  Google Scholar 

  17. Kanig G, Neff H (1975) Ein neues Kontrastierverfahren für die elektronenmikroskopische Untersuchung vonsäure-und estergruppenhaltigen Polymersystemen. Colloid Polym Sci 253:29–31

    CAS  Google Scholar 

  18. Wang Y, Kats A, Juhue D, Winnik MA, Shivers RR, Dinsdale CJ (1992) Freeze-fracture studies of latex films formed in the absence and presence of surfactant. Langmuir 8:1435

    CAS  Google Scholar 

  19. Roulstone BJ, Wilkinson MC, Hearn J, Wilson AJ (1991) Studies on polymer latex films: I. A study of latex film morphology. Polym Int 24:87

    CAS  Google Scholar 

  20. Kim KD, Sperling LH, Klein A (1993) Characterization of film formation from direct miniemulsified polystyrene latex particles via SANS. Macromolecules 26:4624

    CAS  Google Scholar 

  21. Pekcan Ö, Winnik MA, Croucher MD (1990) Fluorescence studies of coalescence and film formation in poly(methyl methacrylate) nonaqueous dispersion particles. Macromolecules 23:2673

    CAS  Google Scholar 

  22. Wang Y, Zhao CL, Winnik MA (1991) Molecular diffusion and latex film formation: an analysis of direct nonradiative energy transfer experiments. J Chem Phys 95:2143

    CAS  Google Scholar 

  23. Wang Y, Winnik MA (1993) Energy-transfer study of polymer diffusion in melt-pressed films of poly(methyl methacrylate). Macromolecules 26:1347

    Google Scholar 

  24. Pekcan Ö, Canpolat M (1996) Direct fluorescence technique to study evolution in transparency and crossing density at polymer–polymer interface during film formation from high-T latex particles. J Appl Polym Sci 59:277

    CAS  Google Scholar 

  25. Pekcan Ö, Canpolat M, Göçmen A (1993) Variation in optical density during latex film formation: interdiffusion of fluorescence labelled polymers. Polymer 34:3319

    CAS  Google Scholar 

  26. Canpolat M, Pekcan Ö (1996) Healing and photon diffusion during sintering of high-T latex particles. J Polym Sci Polym Phys Ed 34:691

    CAS  Google Scholar 

  27. Arda E, Bulmus V, Piskin E, Pekcan Ö (1999) Molecular weight effect on latex film formation from polystyrene particles: a photon transmission study. J Colloid Interface Sci 213:160

    CAS  PubMed  Google Scholar 

  28. Pekcan Ö, Arda E (1999) Void closure and interdiffusion in latex film formation by photon transmission and fluorescence methods. Colloids Surf A 153:537

    CAS  Google Scholar 

  29. Salavagione HJ, Martínez G, Ellis G Garphene-based polymer nanocomposites. Institute of Polymer Science and Technology, Spanish National Research Council (CSIC) Spain

  30. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25. https://doi.org/10.1016/j.polymer.2010.11.042

    Article  CAS  Google Scholar 

  31. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  PubMed  Google Scholar 

  32. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA (2006) Graphene-based composite materials. Nature 442:282–286

    CAS  PubMed  Google Scholar 

  33. Ansari S, Giannelis EP (2009) Functionalized graphene sheet—poly (vinylidene fluoride) conductive nanocomposites. J Polym Sci Part B Polym Phys 47:888–897

    CAS  Google Scholar 

  34. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Alonso MH, Piner RD (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    CAS  PubMed  Google Scholar 

  35. Lee YR, Raghu AV, Jeong HM, Kim BK (2009) Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys 210:1247–1254

    CAS  Google Scholar 

  36. Xu Y, Wang Y, Jiajie L, Huang Y, Ma Y, Wan X (2009) A hybrid material of graphene and poly (3, 4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res 2:343–348

    CAS  Google Scholar 

  37. Quan H, Zhang B, Zhao Q, Yuen RKK, Li RKY (2009) Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos Part A 40:1506–1513

    Google Scholar 

  38. Eda G, Chhowalla M (2009) Graphene-based composite thin films for electronics. Nano Lett 9:814–818

    CAS  PubMed  Google Scholar 

  39. Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y et al (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem 113:9921–9927

    CAS  Google Scholar 

  40. Kim H, Macosko CW (2009) Processing-property relationships of polycarbonate/graphene composites. Polymer 50:3797–3809

    CAS  Google Scholar 

  41. Dikin AK, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    CAS  PubMed  Google Scholar 

  42. Singh K, Ohlan A, Dhawan SK Polymer-graphene nanocomposites: preparation characterization, properties, and applications. Additional information is available at the end of the chapter http://dx.doi.org/10.5772/50408

  43. Ugur S, Elaissari A, Pekcan O (2003) Void closure and interdiffusion processes during latex film formation from surfactant-free polystyrene particles: a fluorescence study. J Colloid Interface Sci 263(2):674–683

    CAS  PubMed  Google Scholar 

  44. Ugur S, Elaissari A, Pekcan O (2004) Film formation from surfactant-free, slightly crosslinked, fluorescein-labeled polystyrene particles. J Coat Technol Res 1(4):305–313

    CAS  Google Scholar 

  45. Pan S, Aksay IA (2011) Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano 5:4073–4083. https://doi.org/10.1021/nn200666r

    Article  CAS  PubMed  Google Scholar 

  46. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  PubMed  Google Scholar 

  47. Meeten GH (1989) Optical properties of polymers, vol 353. Elsevier, London

    Google Scholar 

  48. Liu JS, Feng JF, Winnik MA (1994) Study of polymer diffusion across the interface in latex films through direct energy transfer experiments. J Chem Phys 101:9096–9103

    CAS  Google Scholar 

  49. Keddie JL, Meredith P, Jones RAL, Donald AM, Provder T, Winnik MA, Urban MW (eds) ACS Symposium Series 648, pp 332–348. American Chemical Society (1996)

  50. McKenna GB (1989) Polymer properties. In: Booth C, Price C (eds) Comprehensive polymer science, vol 2. Pergamon Press, Oxford

    Google Scholar 

  51. Vogel H (1925) Phys Z 22:645

    Google Scholar 

  52. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339

    CAS  Google Scholar 

  53. Frenkel J (1945) Viscous flow of crystalline bodies under the action of surface tension. J Phys USSR 9:385–391

    Google Scholar 

  54. Prager S, Tirrell M (1981) The healing process at polymer–polymer interfaces. J Chem Phys 75:5194

    CAS  Google Scholar 

  55. Wool RP, Yuan BL, McGarel OJ (1989) Welding of polymer interfaces. J Polym Eng Sci 29:1340

    CAS  Google Scholar 

  56. de Gennes PG (1982) Kinetics of diffusion‐controlled processes in dense polymer systems. II. Effects of entanglements. J Chem Phys 76:3322

    Google Scholar 

  57. Pekcan Ö, Arda E (1999) Void closure and interdiffusion in latex film formation by photon transmission and fluorescence methods. Colloids Surf A 153:537

    CAS  Google Scholar 

Download references

Acknowledgements

Dr. Sunay thanks the Laboratories in Physics Department of ITU, where she has done the experimental work to prepare this article. We would like to thank Dr. Abdelhamid Elaissari for supplying us with latex materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Selin Sunay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunay, M.S., Uğur, Ş. & Pekcan, Ö. Fluorescence and photon transmission techniques for studying film formation from PS/GO nanocomposites. Polym. Bull. 77, 3061–3077 (2020). https://doi.org/10.1007/s00289-019-02897-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02897-7

Navigation