Skip to main content
Log in

Drug release and swelling behavior of magnetic iron oxide nanocomposite hydrogels based on poly(acrylic acid) grafted onto sodium alginate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this paper, a novel iron oxide nanocomposite hydrogel was prepared by simultaneous formation of superparamagnetic iron oxide nanoparticles and cross-linking of poly(acrylic acid) grafted onto sodium alginate polysaccharide. The prepared optimized hydrogel was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy-dispersive X-ray analysis, atomic force microscopy, and transmission electron microscopy. Moreover, swelling capacity of the obtained hydrogel was measured at different temperatures, different pHs, absorption under load, and magnetic field to assess the sensitivity of ION–PAA-g-NaAlg hydrogel. This hydrogel was also examined as a controlled drug delivery system. Doxorubicin and tetracycline (as model drugs) release was investigated at different pHs, different temperatures, and magnetic field. The release curves were nicely fitted by the Korsmeyer–Peppas equation, and the release is controlled by polymer relaxation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marandi GB, Kermani ZP, Kurdtabar M (2013) Fast and efficient removal of cationic dyes from aqueous solution by collagen-based hydrogel nanocomposites. Polym Plast Technol Eng 52(3):310–318

    CAS  Google Scholar 

  2. Guo J, Jin YC, Yang XQ, Yu SJ, Yin SW, Qi JR (2013) Computed microtomography and mechanical property analysis of soy protein porous hydrogel prepared by homogenizing and microbial transglutaminase cross-linking. Food Hydrocoll 31(2):220–226

    CAS  Google Scholar 

  3. Paques JP, van der Linden E, van Rijn CJ, Sagis LM (2013) Alginate submicron beads prepared through w/o emulsification and gelation with CaCl2 nanoparticles. Food Hydrocoll 31(2):428–434

    CAS  Google Scholar 

  4. Bardajee GR, Hooshyar Z (2014) One-pot synthesis of biocompatible superparamagnetic iron oxide nanoparticles/hydrogel based on salep: characterization and drug delivery. Carbohyd Polym 101:741–751

    CAS  Google Scholar 

  5. Debrassi A, Bürger C, Rodrigues CA, Nedelko N, Ślawska-Waniewska A, Dłużewski P, Greneche JM (2011) Synthesis, characterization and in vitro drug release of magnetic N-benzyl-O-carboxymethylchitosan nanoparticles loaded with indomethacin. Acta Biomater 7(8):3078–3085

    CAS  PubMed  Google Scholar 

  6. Yu S, Wu G, Gu X, Wang J, Wang Y, Gao H, Ma J (2013) Magnetic and pH-sensitive nanoparticles for antitumor drug delivery. Colloids Surf, B 103:15–22

    CAS  Google Scholar 

  7. Rodríguez-Cabello JC, Prieto S, Reguera J, Arias FJ, Ribeiro A (2007) Biofunctional design of elastin-like polymers for advanced applications in nanobiotechnology. J Biomater Sci Polym Ed 18(3):269–286

    PubMed  Google Scholar 

  8. Shirsath SR, Patil AP, Patil R, Naik JB, Gogate PR, Sonawane SH (2013) Removal of brilliant green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: a comparative study. Ultrason Sonochem 20(3):914–923

    CAS  PubMed  Google Scholar 

  9. Matanović MR, Kristl J, Grabnar PA (2014) Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int J Pharm 472(1–2):262–275

    PubMed  Google Scholar 

  10. Matalanis A, McClements DJ (2013) Hydrogel microspheres for encapsulation of lipophilic components: optimization of fabrication & performance. Food Hydrocoll 31(1):15–25

    CAS  Google Scholar 

  11. Thévenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42(17):7099–7116

    PubMed  Google Scholar 

  12. Pichayakorn W, Boonme P (2013) Evaluation of cross-linked chitosan microparticles containing metronidazole for periodontitis treatment. Mater Sci Eng, C 33(3):1197–1202

    CAS  Google Scholar 

  13. Schumers JM, Fustin CA, Gohy JF (2010) Light-responsive block copolymers. Macromol Rapid Commun 31(18):1588–1607

    CAS  PubMed  Google Scholar 

  14. Gupta KM, Barnes SR, Tangaro RA, Roberts MC, Owen DH, Katz DF, Kiser PF (2007) Temperature and pH sensitive hydrogels: an approach towards smart semen-triggered vaginal microbicidal vehicles. J Pharm Sci 96(3):670–681

    CAS  PubMed  Google Scholar 

  15. Peteu SF (2007) Responsive materials configured for micro-and nanoactuation. J Intell Mater Syst Struct 18(2):147–152

    CAS  Google Scholar 

  16. Chen S, Singh J (2005) In vitro release of levonorgestrel from phase sensitive and thermosensitive smart polymer delivery systems. Pharm Dev Technol 10(2):319–325

    CAS  PubMed  Google Scholar 

  17. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12–13):1379–1408

    CAS  PubMed  Google Scholar 

  18. Dumitriu S, Chornet E (1997) Immobilization of xylanase in chitosan–xanthan hydrogels. Biotechnol Prog 13(5):539–545

    CAS  Google Scholar 

  19. Mahdavinia GR, Rahmani Z, Karami S, Pourjavadi A (2014) Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery. J Biomater Sci Polym Ed 25(17):1891–1906

    CAS  PubMed  Google Scholar 

  20. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70

    CAS  Google Scholar 

  21. Homayoni H, Menon JU, Nguyen KT (2014) Chitosan-based nanoparticles for drug delivery. Rev Nanosci Nanotechnol 3(2):133–148

    CAS  Google Scholar 

  22. Liang YY, Zhang LM, Jiang W, Li W (2007) Embedding magnetic nanoparticles into polysaccharide-based hydrogels for magnetically assisted bioseparation. ChemPhysChem 8(16):2367–2372

    CAS  PubMed  Google Scholar 

  23. Chung EY, Kim HM, Lee GH, Kwak BK, Jung JS, Kuh HJ, Lee J (2012) Design of deformable chitosan microspheres loaded with superparamagnetic iron oxide nanoparticles for embolotherapy detectable by magnetic resonance imaging. Carbohyd Polym 90(4):1725–1731

    CAS  Google Scholar 

  24. Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36(1):168–189

    CAS  Google Scholar 

  25. Mok H, Zhang M (2013) Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin Drug Deliv 10(1):73–87

    CAS  PubMed  Google Scholar 

  26. Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501

    PubMed  PubMed Central  Google Scholar 

  27. Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41(7):2575–2589

    CAS  PubMed  Google Scholar 

  28. Yu X, Tong S, Ge M, Zuo J, Cao C, Song W (2013) One-step synthesis of magnetic composites of cellulose@ iron oxide nanoparticles for arsenic removal. J Mater Chem A 1(3):959–965

    CAS  Google Scholar 

  29. Hilger I, Kaiser WA (2012) Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 7(9):1443–1459

    CAS  PubMed  Google Scholar 

  30. Benderbous S, Corot C, Jacobs P, Bonnemain B (1996) Superparamagnetic agents: physicochemical characteristics and preclinical imaging evaluation. Acad Radiol 3:292–294

    Google Scholar 

  31. Kishimoto M, Minagawa M, Yanagihara H, Oda T, Ohkochi N, Kita E (2012) Synthesis and magnetic properties of platelet γ-Fe2O3 particles for medical applications using hysteresis-loss heating. J Magn Magn Mater 324(7):1285–1289

    CAS  Google Scholar 

  32. Pankhurst QA (2006) Nanomagnetic medical sensors and treatment methodologies. BT Technol J 24(3):33–38

    Google Scholar 

  33. Guisasola E, Vallet-Regí M, Baeza A (2018) Magnetically responsive polymers for drug delivery applications. Stimuli Responsive Polym Nanocarriers Drug Deliv Appl 1:143–168

    Google Scholar 

  34. Kurdtabar M, Nezam H, Bardajee GR, Dezfulian M, Salimi H (2018) Biocompatible magnetic hydrogel nanocomposite based on carboxymethylcellulose: synthesis, cell culture property and drug delivery. Polym Sci, Ser B 60(2):231–242

    CAS  Google Scholar 

  35. Kurdtabar M, Koutenaee RN, Bardajee GR (2018) Synthesis and characterization of a novel pH-responsive nanocomposite hydrogel based on chitosan for targeted drug release. J Polym Res 25(5):119

    Google Scholar 

  36. Bardajee GR, Hooshyar Z, Rastgo F (2013) Kappa carrageenan-g-poly(acrylic acid)/SPION nanocomposite as a novel stimuli-sensitive drug delivery system. Colloid Polym Sci 291(12):2791–2803

    CAS  Google Scholar 

  37. Bardajee GR, Hooshyar Z (2013) A novel biocompatible magnetic iron oxide nanoparticles/hydrogel based on poly(acrylic acid) grafted onto starch for controlled drug release. J Polym Res 20(11):298

    Google Scholar 

  38. Bardajee GR, Mizani F, Hosseini SS (2017) pH sensitive release of doxorubicin anticancer drug from gold nanocomposite hydrogel based on poly(acrylic acid) grafted onto salep biopolymer. J Polym Res 24(3):48

    Google Scholar 

  39. Matalanis A, McClements DJ (2013) Hydrogel microspheres for encapsulation of lipophilic components: optimization of fabrication & performance. Food Hydrocoll 31(1):15–25

    CAS  Google Scholar 

  40. Zhou L, He B, Zhang F (2011) Facile one-pot synthesis of iron oxide nanoparticles cross-linked magnetic poly(vinyl alcohol) gel beads for drug delivery. ACS Appl Mater Interfaces 4(1):192–199

    PubMed  Google Scholar 

  41. Ilg P (2013) Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles. Soft Matter 9(13):3465–3468

    CAS  Google Scholar 

  42. Pourjavadi A, Harzandi AM, Hosseinzadeh H (2004) Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polymer J 40(7):1363–1370

    CAS  Google Scholar 

  43. Khan A, El-Toni AM, Alhoshan M (2012) Preparation of thermo-responsive hydrogel-coated magnetic nanoparticles. Mater Lett 89:12–15

    CAS  Google Scholar 

  44. Liu TY, Hu SH, Liu KH, Liu DM, Chen SY (2006) Preparation and characterization of smart magnetic hydrogels and its use for drug release. J Magn Magn Mater 304(1):397–399

    Google Scholar 

  45. Philippova O, Barabanova A, Molchanov V, Khokhlov A (2011) Magnetic polymer beads: recent trends and developments in synthetic design and applications. Eur Polym J 47(4):542–559

    CAS  Google Scholar 

  46. Liu TY, Hu SH, Liu KH, Liu DM, Chen SY (2006) Preparation and characterization of smart magnetic hydrogels and its use for drug release. J Magn Magn Mater 304(1):397–399

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Kurdtabar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurdtabar, M., Rezanejade Bardajee, G. Drug release and swelling behavior of magnetic iron oxide nanocomposite hydrogels based on poly(acrylic acid) grafted onto sodium alginate. Polym. Bull. 77, 3001–3015 (2020). https://doi.org/10.1007/s00289-019-02894-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02894-w

Keywords

Navigation