Skip to main content

Advertisement

Log in

Investigation on enhancement of electrical, dielectric and ion transport properties of nanoclay-based blend polymer nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

An intercalated blend polymer nanocomposite (PNC) films based on blend (PEO–PVC), LiPF6 as salt and modified montmorillonite (MMMT) as nanoclay are prepared via solution cast method. The impact of the nanoclay on the morphology, structure, polymer–polymer, polymer–ion interactions, ionic conductivity, voltage stability window, glass transition temperature, dielectric permittivity, and ac conductivity has been explored. The structural analysis evidenced the formation of blended and intercalated polymer nanocomposites. The FTIR analysis confirmed the interaction between polymer–ion-nanoclay, and polymer intercalation is evidenced by the out-of-the-plane mode [Si–O mode] of MMMT. An increase in the fraction of free anions with clay addition is confirmed. The highest ionic conductivity of about ~ 8.2 × 10−5 S cm−1 (at RT) and 1.01 × 10−3 S cm−1 (at 100 °C) is exhibited by 5 wt% MMMT based PNC. A strong correlation is observed between the glass transition temperature, crystallinity, melting temperature (Tm), ionic conductivity, relaxation time, and dielectric strength. The dielectric data have been fitted and enhanced dielectric strength and lowering of the relaxation time (\( \tau_{{\varepsilon^{\prime} }} \;{\text{and}}\;\tau_{\text{m}} \)) with clay addition evidences the faster segmental motion of polymer chain. The intercalated PNC shows thermal stability up to ~ 300 °C, high ion transference number (~ 1), and broad voltage stability window of ~ 5 V. An absolute agreement between ion mobility (μ), diffusion coefficient (D), and ionic conductivity is observed. An ion transport mechanism has been proposed on the basis of experimental results. Therefore, the proposed PNC can be adopted as electrolyte cum separator for energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Barbosa JC, Dias JP, Lanceros-Méndez S, Costa CM (2018) Recent advances in poly(Vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes 8:45

    PubMed Central  Google Scholar 

  2. Hong SY, Kim Y, Park Y et al (2013) Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ Sci 6:2067–2081

    CAS  Google Scholar 

  3. Yang Q, Zhang Z, Sun XG et al (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064

    CAS  PubMed  Google Scholar 

  4. Armand MB (1980) Intercalation electrodes. Materials for advanced batteries. Springer, Boston, pp 145–161

    Google Scholar 

  5. Arya A, Sharma AL (2019) Electrolyte for energy storage/conversion (Li+, Na+, Mg2+) devices based on PVC and their associated polymer: a comprehensive review. J Solid State Electrochem 23(4):997–1059

    CAS  Google Scholar 

  6. Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23:497–540

    CAS  Google Scholar 

  7. Zhang Z, Shao Y, Lotsch B et al (2018) New horizons for inorganic solid state ion conductors. Energy Environ Sci 11:1945–1976

    CAS  Google Scholar 

  8. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589

    CAS  Google Scholar 

  9. Shriver DF, Bruce PG, In Bruce PG (1995) Solid state electrochemistry. Cambridge University Press, Cambridge, p 95

    Google Scholar 

  10. Zhao C, Liu L, Qi X et al (2018) Solid-state sodium batteries. Adv Energy Mater 8:173012

    Google Scholar 

  11. Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50:443002

    Google Scholar 

  12. Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    CAS  Google Scholar 

  13. Vegge T, Younesi R, Johansson P et al (2015) Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy Environ Sci 8:1905–1922

    Google Scholar 

  14. Sharma AL, Thakur AK (2010) Improvement in voltage, thermal, mechanical stability and ion transport properties in polymer–clay nanocomposites. J Appl Polym Sci 118:2743–2753

    CAS  Google Scholar 

  15. Arya A, Sadiq M, Sharma AL (2018) Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites. Ionics 24:2295–2319

    CAS  Google Scholar 

  16. Prasanth R, Shubha N, Hng HH, Srinivasan M (2013) Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. Eur Polym J 49:307–318

    CAS  Google Scholar 

  17. Sharma AL, Thakur AK (2010) Polymer–ion–clay interaction based model for ion conduction in intercalation-type polymer nanocomposite. Ionics 16:339–350

    CAS  Google Scholar 

  18. Arya A, Sharma AL (2018) Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J Phys D Appl Phys 51:045504

    Google Scholar 

  19. Kazim S, Ahmad S, Pfleger J et al (2012) Polyaniline–sodium montmorillonite clay nanocomposites: effect of clay concentration on thermal, structural, and electrical properties. J Mater Sci 47:420–428

    CAS  Google Scholar 

  20. Shukla N, Thakur AK (2010) Ion transport model in exfoliated and intercalated polymer–clay nanocomposites. Solid State Ion 181:921–932

    CAS  Google Scholar 

  21. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    CAS  Google Scholar 

  22. Kim S, Hwang EJ, Jung Y et al (2008) Ionic conductivity of polymeric nanocomposite electrolytes based on poly(ethylene oxide) and organo-clay materials. Colloids Surf, A 313–314:216–219

    Google Scholar 

  23. Choudhary S, Sengwa RJ (2012) Ionic conductivity of lithium perchlorate salt in polymeric electrolyte solutions and MMT nano-sheets dispersed colloids. Indian J Eng Mater Sci 19:245–252

    CAS  Google Scholar 

  24. Chen HW, Chiu CY, Chang FC (2002) Conductivity enhancement mechanism of the poly(ethylene oxide)/modified-clay/LiClO4 systems. J Polym Sci, Part B: Polym Phys 40:1342–1353

    CAS  Google Scholar 

  25. Chen HW, Lin TP, Chang FC (2002) Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay. Polymer 43:5281–5288

    CAS  Google Scholar 

  26. Feldman D (2015) Polyblend nanocomposites. J Macromol Sci Part A: Pure Appl Chem 52:648–658

    CAS  Google Scholar 

  27. Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng, C 23:763–772

    Google Scholar 

  28. Sai Prasanna CM, Austin Suthanthiraraj S (2019) PVC/PEMA-based blended nanocomposite gel polymer electrolytes plasticized with room temperature ionic liquid and dispersed with nano-ZrO2 for zinc ion batteries. Polym Compos. https://doi.org/10.1002/pc.25201

    Article  Google Scholar 

  29. Sharma AL, Thakur AK (2011) Polymer matrix-clay interaction mediated mechanism of electrical transport in exfoliated and intercalated polymer nanocomposites. J Mater Sci 46:1916–1931

    CAS  Google Scholar 

  30. Araujo EM, Leite AMD, da Paz RA et al (2011) Polyamide 6 nanocomposites with inorganic particles modified with three quaternary ammonium salts. Materials 4:1956–1966

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fawaz J, Mittal V (2015) Synthesis of polymer nanocomposites: review of various techniques. Wiley, Weinheim, pp 992–1057

    Google Scholar 

  32. Fu X, Qutubuddin S (2001) Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42:807–813

    CAS  Google Scholar 

  33. Ni’Mah YL, Cheng MY, Cheng JH et al (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381

    Google Scholar 

  34. Subban RHY, Arof AK (2004) Plasticiser interactions with polymer and salt in PVC-LiCF 3SO3-DMF electrolytes. Eur Polym J 40:1841–1847

    CAS  Google Scholar 

  35. Cole KC (2008) Use of infrared spectroscopy to characterize clay intercalation and exfoliation in polymer nanocomposites. Macromolecules 41:834–843

    CAS  Google Scholar 

  36. Sengwa RJ, Dhatarwal P, Choudhary S (2018) Study of time-ageing effect on the ionic conduction and structural dynamics in solid polymer electrolytes by dielectric relaxation spectroscopy. Solid State Ion 324:247–259

    CAS  Google Scholar 

  37. Ibrahim S, Yassin MM, Ahmad R, Johan MR (2011) Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes. Ionics 17:399–405

    CAS  Google Scholar 

  38. Anilkumar KM, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly(ethylene oxide) (PEO)—Poly(vinyl pyrrolidone) (PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur Polym J 89:249–262

    CAS  Google Scholar 

  39. Das A, Thakur AK, Kumar K (2013) Exploring low temperature Li+ ion conducting plastic battery electrolyte. Ionics 19:1811–1823

    CAS  Google Scholar 

  40. Arya A, Sharma AL (2018) Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci: Mater Electron 29:17903–17920

    CAS  Google Scholar 

  41. Han SD, Yun SH, Borodin O, Seo D, Sommer DM, Young RD, Henderson WA (2015) Solvate structures and computational/spectroscopic characterization of LiPF6 electrolytes. J Phys Chem C 119:8492–8500

    CAS  Google Scholar 

  42. Ducasse L, Dussauze M, Grondin J, Lassègues JC, Naudin C, Servant L (2003) Spectroscopic study of poly(ethylene oxide)6: LiX complexes (X = PF6, AsF6, SbF6, ClO4. Phys Chem Chem Phys 5:567–574

    CAS  Google Scholar 

  43. Chen HW, Chang FC (2001) The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer 42:9763–9769

    CAS  Google Scholar 

  44. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric, London

    Google Scholar 

  45. Scrosati B, Croce F, Persi L (2002) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147:1718–1721

    Google Scholar 

  46. Pritam Arya A, Sharma AL (2019) Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodium ion rechargeable batteries. J Mater Sci 54:7131–7155

    CAS  Google Scholar 

  47. Ghadami A, Taheri Qazvini N, Nikfarjam N (2014) Ionic conductivity in gelatin-based hybrid solid electrolytes: the non-trivial role of nanoclay. J Mater Sci Technol 30:1096–1102

    CAS  Google Scholar 

  48. Hackett E, Manias E, Giannelis EP (2000) Computer simulation studies of PEO/layer silicate nanocomposites. Chem Mater 12:2161–2167

    CAS  Google Scholar 

  49. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35

    CAS  Google Scholar 

  50. Dam T, Karan NK, Thomas R, Pradhan DK, Katiyar RS (2015) Observation of ionic transport and ion-coordinated segmental motions in composite (polymer–salt–clay) solid polymer electrolyte. Ionics 21:401–410

    CAS  Google Scholar 

  51. Reddy Polu A, Kumar R (2012) Impedance spectroscopy and FTIR studies of PEG—based polymer electrolytes. E-J Chem 8:347–353

    Google Scholar 

  52. Mohamad AA, Mohamed NS, Yahya MZA et al (2003) Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel-zinc cells. Solid State Ion 156:171–177

    CAS  Google Scholar 

  53. Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22:2725–2745

    CAS  Google Scholar 

  54. Chrissopoulou K, Andrikopoulos KS, Fotiadou S et al (2011) Crystallinity and chain conformation in PEO/layered silicate nanocomposites. Macromolecules 44:9710–9722

    CAS  Google Scholar 

  55. Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim Acta 235:210–222

    CAS  Google Scholar 

  56. Fan L, Dang Z, Nan CW, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P (VDF-HFP) blends. Electrochim Acta 48:205–209

    CAS  Google Scholar 

  57. Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867

    CAS  PubMed  Google Scholar 

  58. Bandara TMWJ, Dissanayake MAKL, Albinsson I, Mellander BE (2011) Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N + I using electrical and dielectric measurements. Solid State Ion 189:63–68

    CAS  Google Scholar 

  59. Salehiyan R, Yussuf AA, Hanani NF, Hassan A, Akbari A (2015) Polylactic acid/polycaprolactone nanocomposite: influence of montmorillonite and impact modifier on mechanical, thermal, and morphological properties. J Elastomers Plast 47:69–87

    CAS  Google Scholar 

  60. Kanimozhi G, Vinoth S, Harish K, Srinadhu ES, Satyanarayana N (2018) Conductivity and dielectric permittivity studies of KI- based Nanocomposite (PEO/PMMA/KI/I2/ZnO nanorods) polymer solid electrolytes. Polym Compos 40(7):2919–2928

    Google Scholar 

  61. Ravi M, Pavani y, Kiran Kumar K, Bhavani S, Sharma AK, Narasimha Rao VVR (2011) Studies on electrical and dielectric properties of PVP:KBr O4 complexed polymer electrolyte films. Mater Chem Phys 131:442–448

    Google Scholar 

  62. Jiang X, Zhao X, Peng G, Liu W, Liu K, Zhan Z (2017) Investigation on crystalline structure and dielectric relaxation behaviors of hot pressed poly (vinylidene fluoride) film. Curr Appl Phys 17:15–23

    Google Scholar 

  63. Karmakar A, Ghosh A (2012) Dielectric permittivity and electric modulus of polyethylene oxide (PEO)–LiClO4 composite electrolytes. Curr Appl Phys 12:539–543

    Google Scholar 

  64. Wei YZ, Sridhar S (1993) A new graphical representation for dielectric data. J Chem Phys 99:3119–3124

    CAS  Google Scholar 

  65. Arya A, Sharma AL (2018) Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte. J Phys: Condens Matter 30:165402

    Google Scholar 

  66. Choudhary S (2017) Dielectric dispersion and relaxations in (PVA–PEO)–ZnO polymer nanocomposites. Phys B 522:48–56

    CAS  Google Scholar 

  67. Abutalib MM (2019) Effect of zinc oxide nanorods on the structural, thermal, dielectric and electrical properties of polyvinyl alcohol/carboxymethyle cellulose composites. Phys B 557:108–116

    CAS  Google Scholar 

  68. Arya A, Sharma AL (2019) Tailoring of the structural, morphological, electrochemical, and dielectric properties of solid polymer electrolyte. Ionics 25:1617–1632

    CAS  Google Scholar 

  69. Casar G, Li X, Malic B, Zhang QM, Bobnar V (2015) Impact of structural changes on dielectric and thermal properties of vinylidene fluoride–trifluoroethylene-based terpolymer/copolymer blends. Phys B 461:5–9

    CAS  Google Scholar 

  70. Arya A, Sharma AL (2018) Temperature and salt-dependent dielectric properties of blend solid polymer electrolyte complexed with LiBOB. Macromol Res 27(4):334–345

    Google Scholar 

  71. García-Bernabé A, Rivera A, Granados A, Luis SV, Compañ V (2016) Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochim Acta 213:887–897

    Google Scholar 

  72. Das S, Ghosh A (2017) Charge carrier relaxation in different plasticized PEO/PVDF-HFP blend solid polymer electrolytes. J Phys Chem B 121:5422–5432

    CAS  PubMed  Google Scholar 

  73. Arya A, Saykar NG, Sharma AL (2019) Impact of Shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free standing solid polymeric separator for energy storage/conversion devices. J Appl Polym Sci 136:47361

    Google Scholar 

  74. Arya A, Sadiq M, Sharma AL (2018) Structural, electrical and ion transport properties of free-standing blended solid polymeric thin films. Polym Bull. https://doi.org/10.1007/s00289-018-2645-y

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (AA) is thankful to the Central University of Punjab for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, A., Sharma, A.L. Investigation on enhancement of electrical, dielectric and ion transport properties of nanoclay-based blend polymer nanocomposites. Polym. Bull. 77, 2965–2999 (2020). https://doi.org/10.1007/s00289-019-02893-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02893-x

Keywords

Navigation