Skip to main content

Advertisement

Log in

Wound dressing application of castor oil- and CAPA-based polyurethane membranes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate and compare the effects of two different types of polyols on properties of synthesized polyurethanes (PUs), to develop biomedical applications of these materials. Polyurethane membranes were prepared from two different polyols (castor oil and CAPA 7201) as wound healing films. The chemical, physical, mechanical and biological properties of the prepared membranes were studied. Both films had smooth surfaces, with no signs of pores and cracks. CAPA-based polyurethane showed higher crystallinity and lower thermal stability compared to the other polyurethanes. Results of contact angle and water vapor transmission rate (WVTR) showed no significant differences between two different polyols used in PU synthesis. The water absorption of the CAPA-based PU (5.67%) was higher than the castor oil-based PU (0.76%) after immersion in water for 3 days at 37 °C. The values of WVTR were obtained as 260 and 285 g/m2/day for PCL and castor oil-based PUs, respectively. CAPA-based PU membrane showed 4 MPa tensile strength and about 550% elongation at break which is higher than the other samples (1.7 MPa and 100%). The viability of L-929 mouse cell line in contact with CAPA-based PU film was greater than 80% and showed a lack of toxicity of the synthesized polymer. The in vivo wound healing model evaluation using a full-thickness rat model experiment was carried out within 13 days. The wound size reduction of castor oil and CAPA-based PUs reached to 99% compared to 68% in gauze sample on the 13th day after surgery. The in vivo results revealed that PUs derived from CAPA 7201 was milder and led to less inflammatory response compared to castor oil which consequently was completely filled with new epithelium without any significant adverse reactions. Consequently, results confirmed the potential use of CAPA-based PU in biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhong S, Zhang Y, Lim C (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 2(5):510–525

    CAS  Google Scholar 

  2. Paul W, Sharma CP (2004) Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs 18(1):18–23

    Google Scholar 

  3. Zhang Z, Michniak-Kohn BB (2012) Tissue engineered human skin equivalents. Pharmaceutics 4(1):26–41

    PubMed  PubMed Central  Google Scholar 

  4. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011) Skin tissue engineering—in vivo and in vitro applications. Adv Drug Deliv Rev 63(4–5):352–366

    CAS  PubMed  Google Scholar 

  5. Kaur T, Thirugnanam A (2017) Effect of porous activated charcoal reinforcement on mechanical and in-vitro biological properties of polyvinyl alcohol composite scaffolds. J Mater Sci Technol 33(7):734–743. https://doi.org/10.1016/j.jmst.2016.06.020

    Article  Google Scholar 

  6. Khalili S, Nouri Khorasani S, Razavi M, Hashemi Beni B, Heydari F, Tamayol A (2018) Nanofibrous scaffolds with biomimetic structure. J Biomed Mater Res, Part A 106(2):370–376. https://doi.org/10.1002/jbm.a.36246

    Article  CAS  Google Scholar 

  7. Khalili S, Khorasani SN, Razavi SM, Hashemibeni B, Tamayol A (2019) Nanofibrous scaffolds with biomimetic composition for skin regeneration. Appl Biochem Biotechnol 187(4):1193–1203. https://doi.org/10.1007/s12010-018-2871-7

    Article  CAS  PubMed  Google Scholar 

  8. Rawlings AV, Harding CR (2004) Moisturization and skin barrier function. Dermatol Ther 17(s1):43–48

    PubMed  Google Scholar 

  9. MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445(7130):874

    CAS  PubMed  Google Scholar 

  10. Zaidi Z, Lanigan SW (2010) Dermatology in clinical practice. Springer, Berlin

    Google Scholar 

  11. Yari A, Yeganeh H, Bakhshi H, Gharibi R (2014) Preparation and characterization of novel antibacterial castor oil-based polyurethane membranes for wound dressing application. J Biomed Mater Res, Part A 102(1):84–96

    Google Scholar 

  12. Zhen Z, Zheng Y, Ge Z, Lai C, Xi T (2017) Biological effect and molecular mechanism study of biomaterials based on proteomic research. J Mater Sci Technol 33(7):607–615. https://doi.org/10.1016/j.jmst.2017.01.001

    Article  Google Scholar 

  13. Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S (2019) Wound dressings: current advances and future directions. J Appl Polym Sci 136(27):47738. https://doi.org/10.1002/app.47738

    Article  CAS  Google Scholar 

  14. Kozen BG, Kircher SJ, Henao J, Godinez FS, Johnson AS (2008) An alternative hemostatic dressing: comparison of CELOX, HemCon, and QuikClot. Acad Emerg Med 15(1):74–81

    PubMed  Google Scholar 

  15. Ong S-Y, Wu J, Moochhala SM, Tan M-H, Lu J (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29(32):4323–4332

    CAS  PubMed  Google Scholar 

  16. Kumar PS, Abhilash S, Manzoor K, Nair S, Tamura H, Jayakumar R (2010) Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr Polym 80(3):761–767

    CAS  Google Scholar 

  17. Metcalfe AD, Ferguson MW (2007) Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 28(34):5100–5113

    CAS  PubMed  Google Scholar 

  18. Hein S, Wang K, Stevens W, Kjems J (2008) Chitosan composites for biomedical applications: status, challenges and perspectives. Mater Sci Technol 24(9):1053–1061

    CAS  Google Scholar 

  19. Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    CAS  Google Scholar 

  20. Jung YC, Cho JW (2010) Application of shape memory polyurethane in orthodontic. J Mater Sci: Mater Med 21(10):2881–2886

    CAS  Google Scholar 

  21. Yari A, Yeganeh H, Bakhshi H (2012) Synthesis and evaluation of novel absorptive and antibacterial polyurethane membranes as wound dressing. J Mater Sci: Mater Med 23(9):2187–2202

    CAS  Google Scholar 

  22. Bakhshi H, Yeganeh H, Yari A, Nezhad SK (2014) Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties. J Mater Sci 49(15):5365–5377

    CAS  Google Scholar 

  23. Moghanizadeh-Ashkezari M, Shokrollahi P, Zandi M, Shokrolahi F (2018) Polyurethanes with separately tunable biodegradation behavior and mechanical properties for tissue engineering. Polym Adv Technol 29(1):528–540. https://doi.org/10.1002/pat.4160

    Article  CAS  Google Scholar 

  24. Amina M, Amna T, Hassan MS, Ibrahim TA, Khil M-S (2013) Facile single mode electrospinning way for fabrication of natural product based silver decorated polyurethane nanofibrous membranes: prospective medicated bandages. Colloids Surf, A 425:115–121

    CAS  Google Scholar 

  25. Lu Q-W, Macosko CW (2004) Comparing the compatibility of various functionalized polypropylenes with thermoplastic polyurethane (TPU). Polymer 45(6):1981–1991

    CAS  Google Scholar 

  26. Cao X, Lee LJ, Widya T, Macosko C (2005) Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer 46(3):775–783

    CAS  Google Scholar 

  27. Yeganeh H, Lakouraj MM, Jamshidi S (2005) Synthesis and characterization of novel biodegradable epoxy-modified polyurethane elastomers. J Polym Sci, Part A: Polym Chem 43(14):2985–2996

    CAS  Google Scholar 

  28. Xu R, Luo G, Xia H, He W, Zhao J, Liu B, Tan J, Zhou J, Liu D, Wang Y (2015) Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 40:1–11

    PubMed  Google Scholar 

  29. Hasirci N, Aksoy EA (2007) Synthesis and modifications of polyurethanes for biomedical purposes. High Perform Polym 19(5–6):621–637

    CAS  Google Scholar 

  30. Pradhan KC, Nayak P (2012) Synthesis and characterization of polyurethane nanocomposite from castor oil-hexamethylene diisocyanate (HMDI). Adv Appl Sci Res 3(5):3045–3052

    CAS  Google Scholar 

  31. Rojek P, Prociak A (2012) Effect of different rapeseed-oil-based polyols on mechanical properties of flexible polyurethane foams. J Appl Polym Sci 125(4):2936–2945

    CAS  Google Scholar 

  32. Ronda JC, Lligadas G, Galià M, Cádiz V (2011) Vegetable oils as platform chemicals for polymer synthesis. Eur J Lipid Sci Technol 113(1):46–58

    CAS  Google Scholar 

  33. Lligadas G, Ronda JC, Galia M, Cadiz V (2013) Renewable polymeric materials from vegetable oils: a perspective. Mater Today 16(9):337–343

    CAS  Google Scholar 

  34. Bakhshi H, Yeganeh H, Mehdipour-Ataei S, Shokrgozar MA, Yari A, Saeedi-Eslami SN (2013) Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols. Mater Sci Eng, C 33(1):153–164

    CAS  Google Scholar 

  35. Das S, Pandey P, Mohanty S, Nayak SK (2017) Insight on castor oil based polyurethane and nanocomposites: recent trends and development. Polym-Plast Technol Eng 56(14):1556–1585

    CAS  Google Scholar 

  36. Yeganeh H, Hojati-Talemi P (2007) Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly (ethylene glycol). Polym Degrad Stab 92(3):480–489

    CAS  Google Scholar 

  37. Cangemi JM, Claro Neto S, Chierice GO, Santos AMd (2006) Study of the biodegradation of a polymer derived from castor oil by scanning electron microscopy, thermogravimetry and infrared spectroscopy. Polímeros 16(2):129–135

    CAS  Google Scholar 

  38. Cangemi JM, Santos AMd, Claro Neto S, Chierice GO (2008) Biodegradation of polyurethane derived from castor oil. Polímeros 18(3):201–206

    CAS  Google Scholar 

  39. Sponton M, Casis N, Mazo P, Raud B, Simonetta A, Ríos L, Estenoz D (2013) Biodegradation study by pseudomonas sp. of flexible polyurethane foams derived from castor oil. Int Biodeterior Biodegrad 85:85–94

    CAS  Google Scholar 

  40. McBane JE, Sharifpoor S, Cai K, Labow RS, Santerre JP (2011) Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications. Biomaterials 32(26):6034–6044

    CAS  PubMed  Google Scholar 

  41. Han J, Chen B, Ye L, Zhang A-y, Zhang J, Feng Z-g (2009) Synthesis and characterization of biodegradable polyurethane based on poly (ε-caprolactone) and l-lysine ethyl ester diisocyanate. Front Mater Sci Chin 3(1):25–32

    Google Scholar 

  42. Vatankhah E, Semnani D, Prabhakaran MP, Tadayon M, Razavi S, Ramakrishna S (2014) Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomater 10(2):709–721. https://doi.org/10.1016/j.actbio.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  43. da Silva GR, da Silva-Cunha Jr A, Behar-Cohen F, Ayres E, Oréfice RL (2010) Biodegradation of polyurethanes and nanocomposites to non-cytotoxic degradation products. Polym Degrad Stab 95(4):491–499

    Google Scholar 

  44. Uscátegui YL, Arévalo FR, Díaz LE, Cobo MI, Valero MF (2016) Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. J Biomater Sci Polym Ed 27(18):1860–1879

    PubMed  Google Scholar 

  45. Liu X, Niu Y, Chen KC, Chen S (2017) Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing. Mater Sci Eng, C 71:289–297

    CAS  Google Scholar 

  46. Siafaka PI, Zisi AP, Exindari MK, Karantas ID, Bikiaris DN (2016) Porous dressings of modified chitosan with poly (2-hydroxyethyl acrylate) for topical wound delivery of levofloxacin. Carbohydr Polym 143:90–99

    CAS  PubMed  Google Scholar 

  47. Atar-Froyman L, Sharon A, Weiss EI, Houri-Haddad Y, Kesler-Shvero D, Domb AJ, Pilo R, Beyth N (2015) Anti-biofilm properties of wound dressing incorporating nonrelease polycationic antimicrobials. Biomaterials 46:141–148

    CAS  PubMed  Google Scholar 

  48. Balakrishnan B, Mohanty M, Fernandez AC, Mohanan PV, Jayakrishnan A (2006) Evaluation of the effect of incorporation of dibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 27(8):1355–1361

    CAS  PubMed  Google Scholar 

  49. Yates CC, Whaley D, Babu R, Zhang J, Krishna P, Beckman E, Pasculle AW, Wells A (2007) The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models. Biomaterials 28(27):3977–3986

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Barikani M, Zia KM, Bhatti IA, Zuber M, Bhatti HN (2008) Molecular engineering and properties of chitin based shape memory polyurethanes. Carbohydr Polym 74(3):621–626. https://doi.org/10.1016/j.carbpol.2008.04.023

    Article  CAS  Google Scholar 

  51. Cervantes-Uc JM, Cauich-Rodríguez JV, Vázquez-Torres H, Garfias-Mesías LF, Paul DR (2007) Thermal degradation of commercially available organoclays studied by TGA–FTIR. Thermochim Acta 457(1):92–102. https://doi.org/10.1016/j.tca.2007.03.008

    Article  CAS  Google Scholar 

  52. Cervantes-Uc JM, Espinosa JIM, Cauich-Rodríguez JV, Ávila-Ortega A, Vázquez-Torres H, Marcos-Fernández A, San Román J (2009) TGA/FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial montmorillonites. Polym Degrad Stab 94(10):1666–1677. https://doi.org/10.1016/j.polymdegradstab.2009.06.022

    Article  CAS  Google Scholar 

  53. Sánchez-Adsuar MS (2000) Influence of the composition on the crystallinity and adhesion properties of thermoplastic polyurethane elastomers. Int J Adhes Adhes 20(4):291–298. https://doi.org/10.1016/S0143-7496(99)00059-7

    Article  Google Scholar 

  54. Heijkants RGJC, Calck RVv, van Tienen TG, de Groot JH, Buma P, Pennings AJ, Veth RPH, Schouten AJ (2005) Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly(ε-caprolactone) and 1,4-butane diisocyanate with uniform hard segment. Biomaterials 26(20):4219–4228. https://doi.org/10.1016/j.biomaterials.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  55. Voda A, Beck K, Schauber T, Adler M, Dabisch T, Bescher M, Viol M, Demco DE, Blümich B (2006) Investigation of soft segments of thermoplastic polyurethane by NMR, differential scanning calorimetry and rebound resilience. Polym Test 25(2):203–213. https://doi.org/10.1016/j.polymertesting.2005.10.007

    Article  CAS  Google Scholar 

  56. Bagdi K, Molnár K, Wacha A, Bóta A, Pukánszky B (2011) Hierarchical structure of phase-separated segmented polyurethane elastomers and its effect on properties. Polym Int 60(4):529–536. https://doi.org/10.1002/pi.3003

    Article  CAS  Google Scholar 

  57. Kloss J, Munaro M, De Souza GP, Gulmine JV, Wang SH, Zawadzki S, Akcelrud L (2002) Poly (ester urethane) s with polycaprolactone soft segments: a morphological study. J Polym Sci, Part A: Polym Chem 40(23):4117–4130

    CAS  Google Scholar 

  58. Valério A, Conti DS, Araújo PHH, Sayer C, Rocha SRPd (2015) Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. Colloids Surf, B 135:35–41. https://doi.org/10.1016/j.colsurfb.2015.07.044

    Article  CAS  Google Scholar 

  59. Coutinho FM, Delpech MC (2000) Degradation profile of films cast from aqueous polyurethane dispersions. Polym Degrad Stab 70(1):49–57

    CAS  Google Scholar 

  60. Javni I, Petrović ZS, Guo A, Fuller R (2000) Thermal stability of polyurethanes based on vegetable oils. J Appl Polym Sci 77(8):1723–1734

    CAS  Google Scholar 

  61. Saadatkish N, Nouri Khorasani S, Morshed M, Allafchian A-R, Beigi M-H, Masoudi Rad M, Esmaeely Neisiany R, Nasr-Esfahani M-H (2018) A ternary nanofibrous scaffold potential for central nerve system tissue engineering. J Biomed Mater Res, Part A 106(9):2394–2401. https://doi.org/10.1002/jbm.a.36431

    Article  CAS  Google Scholar 

  62. Yilgör E, Isik M, Söz CK, Yilgör I (2016) Synthesis and structure-property behavior of polycaprolactone-polydimethylsiloxane-polycaprolactone triblock copolymers. Polymer 83:138–153

    Google Scholar 

  63. Wu G-H, Hsu S-h (2016) Synthesis of water-based cationic polyurethane for antibacterial and gene delivery applications. Colloids Surf, B 146:825–832

    CAS  Google Scholar 

  64. Hill MJ, Cheah C, Sarkar D (2016) Interfacial energetics approach for analysis of endothelial cell and segmental polyurethane interactions. Colloids Surf, B 144:46–56

    CAS  Google Scholar 

  65. Abdali Z, Yeganeh H, Solouk A, Gharibi R, Sorayya M (2015) Thermoresponsive antimicrobial wound dressings via simultaneous thiol-ene polymerization and in situ generation of silver nanoparticles. RSC Adv 5(81):66024–66036

    CAS  Google Scholar 

  66. Sathiskumar P, Chopra S, Madras G (2012) Investigation of biodegradable and biocompatible castor oil poly (mannitol-citric-sebacate) polyester as a drug carrier. Curr Sci 102:97–104

    CAS  Google Scholar 

  67. Bishop S, Walker M, Rogers A, Chen W (2003) Importance of moisture balance at the wound-dressing interface. J Wound Care 12(4):125–128

    CAS  PubMed  Google Scholar 

  68. Hess CT, Kirsner RS (2003) Orchestrating wound healing: assessing and preparing the wound bed. Adv Skin Wound Care 16(5):246–257

    PubMed  Google Scholar 

  69. Wu P, Fisher A, Foo P, Queen D, Gaylor J (1995) In vitro assessment of water vapour transmission of synthetic wound dressings. Biomaterials 16(3):171–175

    CAS  PubMed  Google Scholar 

  70. Seaman S (2002) Dressing selection in chronic wound management. J Am Podiatr Med Assoc 92(1):24–33

    PubMed  Google Scholar 

  71. Lamke L-O, Nilsson G, Reithner H (1977) The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns 3(3):159–165

    Google Scholar 

  72. Yoo HJ, Kim HD (2008) Characteristics of waterborne polyurethane/poly (N-vinylpyrrolidone) composite films for wound-healing dressings. J Appl Polym Sci 107(1):331–338

    CAS  Google Scholar 

  73. Guan J, Sacks MS, Beckman EJ, Wagner WR (2004) Biodegradable poly (ether ester urethane) urea elastomers based on poly (ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials 25(1):85–96

    CAS  PubMed  Google Scholar 

  74. Lee SM, Park IK, Kim YS, Kim HJ, Moon H, Mueller S, Jeong Y-I (2016) Physical, morphological, and wound healing properties of a polyurethane foam-film dressing. Biomater Res 20:15. https://doi.org/10.1186/s40824-016-0063-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Das S, Pandey P, Mohanty S, Nayak SK (2017) Insight on castor oil based polyurethane and nanocomposites: recent trends and development. Polym-Plast Technol Eng 56:1–30

    Google Scholar 

  76. Reddy TT, Kano A, Maruyama A, Takahara A (2010) Synthesis, characterization and drug release of biocompatible/biodegradable non-toxic poly (urethane urea) s based on poly (ε-caprolactone) s and lysine-based diisocyanate. J Biomater Sci Polym Ed 21(11):1483–1502

    CAS  PubMed  Google Scholar 

  77. Zia KM, Zuber M, Bhatti IA, Barikani M, Sheikh MA (2009) Evaluation of biocompatibility and mechanical behavior of polyurethane elastomers based on chitin/1, 4-butane diol blends. Int J Biol Macromol 44(1):18–22

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Iranian National Elites Foundation under contract 5972. The authors would like to appreciate financial support. This study was approved by the medical ethics and research office at the Isfahan University of Medical Sciences, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saied Nouri Khorasani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei Hosseinabadi, S., Parsapour, A., Nouri Khorasani, S. et al. Wound dressing application of castor oil- and CAPA-based polyurethane membranes. Polym. Bull. 77, 2945–2964 (2020). https://doi.org/10.1007/s00289-019-02891-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02891-z

Keywords

Navigation