Skip to main content
Log in

Multicomponent polyurethane–carbon black composite as piezoresistive sensor

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Composite of carbon black (CB) dispersed into a multicomponent polyurethane matrix combines the good mechanical properties of the polymer, such as elasticity, with the electrical property of the conducting particles. Electrical current–voltage (I × V) analysis found the percolation threshold through the sample surface to be between 0.6 and 0.8 vol%. Below the percolation threshold concentration (pc), the effect of the Coulomb potential is accentuated on the CB dispersion, while in the region over pc, the London–van der Waals potential is important. The repeatability in the piezoresistive behavior was observed under the application of several loading cycles. The gauge factors obtained were 4.9 and 2.0 for samples with 0.8 and 1.0 vol% of CB, respectively. The results indicate that the material can be used as a piezoresistive sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Capineri L (2014) Resistive sensors with smart textiles for wearable technology: from fabrication process to integration with electronics. Procedia Eng 87:724–727. https://doi.org/10.1016/j.proeng.2014.11.748

    Article  Google Scholar 

  2. Abdelhamid S, Hassanein HS, Takahara G (2014) Vehicle as a mobile sensor. Procedia Comput Sci 34:286–295. https://doi.org/10.1016/j.procs.2014.07.025

    Article  Google Scholar 

  3. Ciuti G, Ricotti L, Menciassi A, Dario P (2015) MEMS sensor technologies for human centred applications in healthcare, physical activities, safety and environmental sensing: a review on research activities in Italy. Sensors 15:6441–6468. https://doi.org/10.3390/s150306441

    Article  PubMed  Google Scholar 

  4. Person MR, Eaton MJ, Pullin R, Featherston CA, Holford KM (2012) energy harvesting for aerospace structural health monitoring systems. J Phys Conf Ser 382:012025. https://doi.org/10.1088/1742-6596/382/1/012025

    Article  CAS  Google Scholar 

  5. Lyndon M, Robinson D, Taylor SE, Amato G, Brien EJO, Uddin N (2017) Improved axle detection for bridge weigh-in-motion systems using fiber optic sensors. J Civil Struct Health Monit 7:325–332. https://doi.org/10.1007/s13349-017-0229-4

    Article  Google Scholar 

  6. Xie J, Long H, Miao M (2016) High sensitivity knitted fabric strain sensors. Smart Mater Struct 25:105008. https://doi.org/10.1088/0964-1726/25/10/105008

    Article  CAS  Google Scholar 

  7. Dai H, Thostenson ET, Schumacher T (2015) Processing and characterization of a novel distributed strain sensor using carbon nanotube-based nonwoven composites. Sensors 15:17728–17747. https://doi.org/10.3390/s150717728

    Article  PubMed  Google Scholar 

  8. Zhai T, Li D, Fei G, Xia H (2015) Piezoresistive and compression resistance relaxation behavior of water blown carbon nanotube/polyurethane composite foam. Compos Part A 72:108–114. https://doi.org/10.1016/j.compositesa.2015.02.003

    Article  CAS  Google Scholar 

  9. Moghaddam MK, Breede A, Brauner C, Lang W (2015) Embedding piezoresistive pressure sensors to obtain online pressure profiles inside fiber composite laminates. Sensors 15:7499–7511. https://doi.org/10.3390/s150407499

    Article  CAS  PubMed  Google Scholar 

  10. Yu X, Kwon E (2009) A carbon nanotube/cement composite with piezoresistive properties. Smart Mater Struct 18:055010. https://doi.org/10.1088/0964-1726/18/5/055010

    Article  CAS  Google Scholar 

  11. Chung DDL (1998) Self-monitoring structural materials. Mater Sci Eng Rev 22:57–78. https://doi.org/10.1016/S0927-796X(97)00021-1

    Article  Google Scholar 

  12. Chung DDL (2004) Electrically conductive cement-based materials. Adv Cem Res 16:167–176. https://doi.org/10.1680/adcr.2004.16.4.167

    Article  CAS  Google Scholar 

  13. Chung DDL (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50:3342–3353. https://doi.org/10.1016/j.carbon.2012.01.031

    Article  CAS  Google Scholar 

  14. Sugiyama S, Takigawa M, Igarashi I (1983) Integrated piezoresistive pressure sensor with both voltage and frequency output. Sens Actuators 4:113–120. https://doi.org/10.1016/0250-6874(83)85015-X

    Article  Google Scholar 

  15. Porter TL, Eastman MP, Pace DL, Bradley M (2001) Sensor based on piezoresistive microcantilever technology. Sens Actuators A Phys 88:47–51. https://doi.org/10.1016/S0924-4247(00)00498-2

    Article  CAS  Google Scholar 

  16. Roy AL, Sarkar H, Dutta A, Bhattacharyya TK (2014) A high precision SOI MEMS–CMOS piezoresistive accelerometer. Sens Actuators A Phys 210:77–85. https://doi.org/10.1016/j.sna.2014.01.036

    Article  CAS  Google Scholar 

  17. Li X, Bao M, Yang H, Shen S, Lu D (1999) A micromachined piezoresistive angular rate sensor with a composite beam structure. Sens Actuators A Phys 72:217–223. https://doi.org/10.1016/S0924-4247(98)00220-9

    Article  CAS  Google Scholar 

  18. Fragiacomo G, Ansbaek T, Pedersen T, Hansen O, Thomsen EV (2010) Analysis of small deflection touch mode behavior in capacitive pressure sensors. Sens Actuators A Phys 161:114–119. https://doi.org/10.1016/j.sna.2010.04.030

    Article  CAS  Google Scholar 

  19. Wu X, Han Y, Zhang X, Lu C (2016) Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@ polyurethane yarn for tiny motion monitoring. ACS Appl Mater Interfaces 8:9936–9945. https://doi.org/10.1021/acsami.6b01174

    Article  CAS  PubMed  Google Scholar 

  20. Li F, Qi L, Yang J, Xu M, Luo X, Ma D (2000) Polyurethane/conducting carbon black composites: structure, electric conductivity, strain recovery behavior, and their relationships. J Appl Polym Sci 75:68–77. https://doi.org/10.1002/(SICI)1097-4628(20000103)75:1%3c68:AID-APP8%3e3.0.CO;2-I

    Article  CAS  Google Scholar 

  21. Rodrigues PC, Akcelrud L (2003) Networks and blends of polyaniline and polyurethane: correlations between composition and thermal, dynamic mechanical and electrical properties. Polymer 44:6891–6899. https://doi.org/10.1016/j.polymer.2003.08.024

    Article  CAS  Google Scholar 

  22. Chen SG, Hu XL, Hu J, Zhang MQ, Rong MZ, Zheng Q (2006) Relationships between organic vapor adsorption behaviors and gas sensitivity of carbon black filled waterborne polyurethane composites. Sens Actuators B 119:110–117. https://doi.org/10.1016/j.snb.2005.12.002

    Article  CAS  Google Scholar 

  23. Zhao B, Fu RW, Zhang MQ, Zhang B, Zeng W, Rong MZ, Zheng Q (2007) Analysis of gas sensing behaviors of carbon black/waterborne polyurethane composites in low concentration organic vapors. J Mater Sci 42:4575–4580. https://doi.org/10.1007/s10853-006-0517-6

    Article  CAS  Google Scholar 

  24. Bunde A, Dieterich W (2000) Percolation in composites. J Electroceram 5:81–92. https://doi.org/10.1023/A:1009997800513

    Article  CAS  Google Scholar 

  25. Zheng S, Deng J, Yang L, Ren D, Huang S, Yang W, Liu Z, Mingbo Yang M (2014) Investigation on the piezoresistive behavior of high-density polyethylene/carbon black films in the elastic and plastic regimes. Compos Sci Technol 97:34–40. https://doi.org/10.1016/j.compscitech.2014.04.001

    Article  CAS  Google Scholar 

  26. Strümpler R, Glatz-Reichenbach J (1999) Conducting polymer composites. J Electroceram 3:329–346. https://doi.org/10.1023/a:1009909812823

    Article  Google Scholar 

  27. Sanches AO, Kanda DHF, Malmonge LF, Silva MJ, Sakamoto WK, Malmonge JA (2017) Synergistic effects on polyurethane/lead zirconate titanate/carbon black three-phase composites. Polym Test 60:253–259. https://doi.org/10.1016/j.polymertesting.2017.03.031

    Article  CAS  Google Scholar 

  28. Guo X, Huang Y, Zhao Y, Mao L, Gao L, Pan W, Zhang Y, Liu P (2017) Ηighly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition. Smart Mater Struct 26:095017. https://doi.org/10.1088/1361-665X/aa79c3

    Article  Google Scholar 

  29. Vionnet-Menot S, Grimaldi C, Maeder T, Strässler S, Ryser P (2005) Tunneling-percolation origin of nonuniversality: theory and experiments. Phys Rev B 71:064201. https://doi.org/10.1103/PhysRevB.71.064201

    Article  CAS  Google Scholar 

  30. Flandin L, Hiltner A, Baer E (2001) Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene–octene elastomer. Polymer 42:827–838. https://doi.org/10.1016/S0032-3861(00)00324-4

    Article  CAS  Google Scholar 

  31. Luheng W, Tianhuai D, Peng W (2009) Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. Carbon 47:3151–3157. https://doi.org/10.1016/j.carbon.2009.06.050

    Article  CAS  Google Scholar 

  32. Rebeque PV, Silva MJ, Cena CR, Nagashima HN, Malmonge JA, Kanda DHF (2019) Analysis of the electrical conduction in percolative nanocomposites based on castor-oil polyurethane with carbon black and activated carbon nanopowder. Polym Compos 40:7–15. https://doi.org/10.1002/pc.24588

    Article  CAS  Google Scholar 

  33. Zhai T, Li D, Fei G, Xia H (2015) Piezoresistive and compression resistance relaxation behavior of water blown carbon nanotube/polyurethane composite foam. Compos Part A Appl Sci Manuf 72:108–114. https://doi.org/10.1016/j.compositesa.2015.02.003

    Article  CAS  Google Scholar 

  34. Sobha AP, Narayanankutty SK (2015) Improved strain sensing property of functionalised multiwalled carbon nanotube/polyaniline composites in TPU matrix. Sens Actuators A 233:98–107. https://doi.org/10.1016/j.sna.2015.06.012

    Article  CAS  Google Scholar 

  35. Mather PJ, Thomas KM (1997) Carbon black/high density polyethylene conducting composite materials: part II The relationship between the positive temperature coefficient and the volume resistivity. J Mater Sci 32:1711–1715. https://doi.org/10.1023/A:1018567731526

    Article  CAS  Google Scholar 

  36. Petrović ZS, Martinović B, Divjaković V, Budinski-Simendić J (1993) Polypropylene–carbon black interaction in conductive composites. J Appl Polym Sci 49:1659–1669. https://doi.org/10.1002/app.1993.070490919

    Article  Google Scholar 

  37. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39:933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

    Article  CAS  Google Scholar 

  38. Zhang S, Liu H, Yang S, Shi X, Zhang D, Shan C, Guo Z (2019) Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with cracked cellulose nanofibril/silver nanowire layer. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.9b00900

    Article  PubMed  PubMed Central  Google Scholar 

  39. Christ JF, Hohimer CJ, Aliheidari N, Ameli A, Mo C, Pötschke P (2017) 3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites. Proc SPIE 10168:101680E. https://doi.org/10.1117/12.2259820

    Article  Google Scholar 

  40. Das NC, Chaki TK, Khastgir D (2002) Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites. Polym Int 51:156–163. https://doi.org/10.1002/pi.811

    Article  CAS  Google Scholar 

  41. Aneli JN, Zaikov GE, Khananashvili LM (1999) Effects of mechanical deformations on the structurization and electric conductivity of electric conducting polymer composites. J Appl Polym Sci 74:601–621. https://doi.org/10.1002/(SICI)1097-4628(19991017)74:3%3c601:AID-APP14%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  42. Yamaguchi K, Busfield JJC, Thomas AG (2003) Electrical and mechanical behavior of filled elastomers. J Polym Sci Part B Polym Phys 41:2079–2089. https://doi.org/10.1002/polb.10571

    Article  CAS  Google Scholar 

  43. Busfield JJC, Thomas AG, Yamaguchi K (2005) Electrical and mechanical behavior of filled rubber. III. Dynamic loading and the rate of recovery. J Polym Sci Part B Polym Phys 43:1649–1661. https://doi.org/10.1002/polb.20452

    Article  CAS  Google Scholar 

  44. Flandin L, Chang A, Nazarenko S, Hiltner A, Baer E (2000) Effect of strain on the properties of an ethylene–octene elastomer with conductive carbon fillers. J Appl Polym Sci 76:894–905. https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6%3c894:AID-APP16%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  45. Zhang R, Deng H, Valenca R, Jin J, Fu Q, Bilotti E, Peijs T (2013) Strain sensing behavior of elastomeric composite films containing carbon nanotubes under cyclic loading. Compos Sci Technol 74:1–5. https://doi.org/10.1016/j.compscitech.2012.09.016

    Article  CAS  Google Scholar 

  46. Lillemose M, Spieser M, Christiansen NO, Christensen A, Boisen A (2008) Intrinsically conductive polymer thin film piezoresistors. Microelectron Eng 85:969–971. https://doi.org/10.1016/j.mee.2007.12.020

    Article  CAS  Google Scholar 

  47. Ku-Herrera JJ, Avilés F, Seidel GD (2013) Self-sensing of elastic strain, matrix yielding and plasticity in multiwall/carbon nanotube vinyl ester composites. Smart Mater Struct 22:085003. https://doi.org/10.1088/0964-1726/22/8/085003

    Article  CAS  Google Scholar 

  48. Zhou L, Jung S, Brandon E, Jackson TN (2006) Flexible substrate microcrystalline silicon and gated amorphous silicon strain sensors. IEEE Trans Electron Devices 53:380–385. https://doi.org/10.1109/TED.2005.861727

    Article  Google Scholar 

  49. Stassi S, Cauda V, Canavese G, Pirri CF (2014) Flexible tactile sensing based on piezoresistive composites: a review. Sensors 14:5296–5332. https://doi.org/10.3390/s140305296

    Article  CAS  PubMed  Google Scholar 

  50. Theodosiou TC, Saravanos DA (2010) Numerical investigation of mechanisms affecting the piezoresistive properties of CNT doped polymers using multi-scale models. Compos Sci Technol 70:1312–1320. https://doi.org/10.1016/j.compscitech.2010.04.003

    Article  CAS  Google Scholar 

  51. Hu N, Karube Y, Arai M, Watanabe T, Yan C, Li Y, Liu Y, Fukunaga H (2010) Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48:680–687. https://doi.org/10.1016/j.carbon.2009.10.012

    Article  CAS  Google Scholar 

  52. Pham GT, Park YB, Liang Z, Zhang C, Wang B (2008) Processing and modeling of conductive thermoplastic/carbon nanotubes films for strain sensing. Compos Part B Eng 39:209–216. https://doi.org/10.1016/j.compositesb.2007.02.024

    Article  CAS  Google Scholar 

  53. Bautista-Quijano JR, Avilés F, Aguilar JO, Tapia A (2010) A strain sensing capabilities of a piezoresistive MWCNT–polysulfone film. Sens Actuators A Phys 159:135–140. https://doi.org/10.1016/j.sna.2010.03.005

    Article  CAS  Google Scholar 

  54. Zhang W, Suhr J, Koratkar N (2006) Carbon nanotube/polycarbonate composites as multifunctional strain sensors. J Nanosci Nanotechnol 6:960–964. https://doi.org/10.1166/jnn.2006.171

    Article  CAS  PubMed  Google Scholar 

  55. Yi W, Wang Y, Wang G, Tao X (2012) Investigation of carbon black/silicone elastomer/dimethylsilicone oil composites for flexible strain sensors. Polym Test 31:677–684. https://doi.org/10.1016/j.polymertesting.2012.03.006

    Article  CAS  Google Scholar 

  56. Oliva-Avilés AI, Avilés F, Sosa V (2009) Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon 49:2989–2997. https://doi.org/10.1016/j.carbon.2011.03.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Coordination for the Improvement of Higher Level or Education Personnel (CAPES) for financial support and to the Mato Grosso Research Foundation (FAPEMAT) for providing equipment to the laboratory and allowing for analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliraldrin Amorin Sousa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, E.A., Lima, T.H.C., Arlindo, E.P.S. et al. Multicomponent polyurethane–carbon black composite as piezoresistive sensor. Polym. Bull. 77, 3017–3031 (2020). https://doi.org/10.1007/s00289-019-02888-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02888-8

Keywords

Navigation