Skip to main content
Log in

Synthesis, characterization and rheological properties of multiblock associative copolymers by RAFT technique

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Preparation of associating multiblock copolymer electrolytes mediated by radical addition–fragmentation chain transfer (RAFT) technique has been evaluated and reported in this investigation. The synthesization of copolymers was performed at room temperature in 1,4-dioxane using redox catalyst: tert-butyl hydroperoxide and ascorbic acid as initiator. The copolymers are composed of a large hydrophilic block formed with acrylic acid and ethyl acrylate and a short hydrophobic segment of lauryl acrylate. A symmetrical RAFT chain transfer agent was used in order to incorporate a greater number of blocks by chain extension of macroagent, triblock and pentablock copolymers. Once obtained, the resultant polymers were thoroughly characterized by nuclear magnetic resonance, size exclusion chromatography, differential scanning calorimetry and rheometry with the aim to determine the structure–property relationship. The influence of hydrophobic length was demonstrated and played a significant role in the rheological properties of copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Llamas S, Guzmán E, Ortega F, Baghdadli N, Cazeneuve C, Rubio RG, Luengo GS (2015) Adsorption of polyelectrolytes and polyelectrolytes-surfactant mixtures at surfaces: a physico-chemical approach to a cosmetic challenge. Adv Colloid Interface Sci 222:461–487

    Article  CAS  Google Scholar 

  2. Sabhapondit A, Borthakur A, Haque I (2003) Water soluble acrylamidomethyl propane sulfonate (AMPS) copolymer as an enhanced oil recovery chemical. Energy Fuels 17:683–688

    Article  CAS  Google Scholar 

  3. Ghimici L (2016) Cationic polyelectrolyte induced separation of some inorganic contaminants and their mixture (zirconium silicate, kaolin, K-feldspar, zinc oxide) as well as of the paraffin oil from water. J Environ Manag 169:1–7

    Article  CAS  Google Scholar 

  4. Saindane P, Jagtap RN (2015) RAFT copolymerization of amphiphilic poly (ethyl acrylate-b-acrylic acid) as wetting and dispersing agents for water borne coating. Prog Org Coat 79:106–114

    Article  CAS  Google Scholar 

  5. Rolland J, Poggi E, Vlad A, Gohy J-F (2015) Single-ion diblock copolymers for solid-state polymer electrolytes. Polymer 68:344–352

    Article  CAS  Google Scholar 

  6. Phan TNT, Ferrand A, Ho HT, Liénafa L, Rollet M, Maria S, Boucher R, Gigmes D (2016) Vinyl monomers bearing a sulfonyl(trifluoromethane sulfonyl) imide group: synthesis and polymerization using nitroxide-mediated polymerization. Polym Chem 7:6901–6910

    Article  CAS  Google Scholar 

  7. Volpert E, Selb J, Candau F (1996) Influence of the hydrophobe structure on composition, microstructure, and rheology in associating polyacrylamides prepared by micellar copolymerization. Macromolecules 29(5):1452–1463

    Article  CAS  Google Scholar 

  8. Jiménez-Regalado EJ, Selb J, Cadau F (1999) Viscoelastic behavior of semidilute solutions of multisticker polymer chains. Macromolecules 32:8580–8588

    Article  Google Scholar 

  9. Jiménez-Regalado EJ, Cadenas-Pliego G, Pérez-Álvarez M, Hernández-Valdez Y (2004) Characterization and rheological properties of dilute-solutions of three different families of water-soluble copolymers prepared by solution polymerization. Macromol Res 12(5):451–458

    Article  Google Scholar 

  10. Winnik MA, Yekta A (1997) Associative polymers in aqueous solution. Curr Opin Colloid Interface Sci 2(4):424–436

    Article  CAS  Google Scholar 

  11. González-Coronel VJ, Jiménez-Regalado E (2009) Synthesis, characterization and rheological properties of three different microstructures of water-soluble polymers prepared by solution polymerization. J Polym Bull 62(6):727–736

    Article  Google Scholar 

  12. Barrat JL, Joanny JF (1996) Theory of polyelectroyte solutions. Wiley, New York

    Google Scholar 

  13. Schanze KS, Shelton AH (2009) Functional polyelectrolytes. Langmuir 25(24):13698–13702

    Article  CAS  Google Scholar 

  14. Alami E, Almgren M, Brown W, François J (1996) Aggregation of Hydrophobically end-capped poly(ethylene oxide) in aqueous solutions. Fluorescence and light-scattering studies. Macromolecules 29:2229–2243

    Article  CAS  Google Scholar 

  15. Maechling-Strasser C, Clouet F, François J (1992) Hydrophobically end-capped polyethylene-oxide urethanes: 2. Modelling their association in water. Polymer 33:1021–1025

    Article  CAS  Google Scholar 

  16. Lara-Ceniceros AC, Rivera-Vallejo C, Jiménez-Regalado E (2007) Synthesis, characterization and rheological properties of three different associative polymers obtained by micellar polymerization. Polym Bull 58:425–433

    Article  CAS  Google Scholar 

  17. Zhu Y, Lowe AB, Roth PJ (2014) Postpolymerization synthesis of (bis)amide (co)polymers: thermoresponsive behavior and self-association. Polymer 55:4425–4431

    Article  CAS  Google Scholar 

  18. Díaz-Silvestre SE, St Thomas C, Maldonado-Textle H, Rivera-Vallejo C, Díaz de León-Gómez RE, Jiménez-Regalado EJ (2018) Effect of N-isopropylacrylamide thermoresponsive blocks on the rheological properties of water-soluble thermoassociative copolymers synthesized via RAFT polymerization. Colloid Polym Sci 296:1699–1710

    Article  Google Scholar 

  19. Chen H-X, Tang H-M, Wu X-Y, Liu Y-G, Bai J-H, Zhao F (2016) Synthesis, characterization, and property evaluation of a hydrophobically modified polyacrylamide as enhanced oil recovery chemical. J Disper Sci Technol 37:486–495

    Article  Google Scholar 

  20. Kostansek E (2005) Associative polymer/latex dispersion phase diagrams II: HASE thickeners. J Coat Technol Res 2:417–422

    Article  CAS  Google Scholar 

  21. Eisenberg A, Kim J-S (1998) Introduction to ionomers. Wiley, New York

    Google Scholar 

  22. Budd PM (1989) Comprehensive polymer science and supplements, Chap 11. Polyelectrolytes 1:215–230

    Google Scholar 

  23. Alb AM, Paril A, Çatalgil-Giz H, Giz A, Reed WF (2007) Evolution of composition, molar mass, and conductivity during the free radical copolymerization of polyelectrolytes. J Phys Chem B 111:8560–8566

    Article  CAS  Google Scholar 

  24. Jenkins AD, Jones RG, Moad G (2010) Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations 2010). Pure Appl Chem 82(2):483–491

    Article  CAS  Google Scholar 

  25. Matyjaszewski K (2017) Kinetics of atom transfer radical polymerization. Eur Polym J 89:482–523

    Article  Google Scholar 

  26. Perrier S (2017) 50th anniversary perspective: RAFT polymerization—a user guide. Macromolecules 50(19):7433–7447

    Article  CAS  Google Scholar 

  27. Moad G, Rizzardo E, Thang SH (2012) Living radical polymerization by the RAFT process—a third update. Aust J Chem 65:985–1076

    Article  CAS  Google Scholar 

  28. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562

    Article  CAS  Google Scholar 

  29. Pearson S, St Thomas C, Guerrero Santos R, D’Agosto F (2017) Opportunities for dual RDRP agents in synthesizing novel polymeric materials. Polym Chem 8:4916–4946

    Article  CAS  Google Scholar 

  30. Guzmán G, Nava D, Vazquez-Arenas J, Cardoso J, Alvarez-Ramirez J (2018) Polymer electrolytes through functionalization of poly (poly (ethylene glycol) methacrylate) with zwitterionic pendant groups: the role of ion clusters upon conductivity. Solid State Ionic 320:45–54

    Article  Google Scholar 

  31. Chaduc I, Crepet A, Boyron O, Charleux B, D’Agosto F, Lansalot M (2013) Effect of the pH on the RAFT polymerization of acrylic acid in water. Application to the synthesis of poly(acrylic acid)-stabilized polystyrene particles by RAFT emulsion polymerization. Macromolecules 46:6013–6023

    Article  CAS  Google Scholar 

  32. Yu Q, Wu X, Li Y, Gao T, Liu S, Hou C, Zheng Z (2018) Synthesis, characterization, and aqueous properties of an amphiphilic terpolymer with a novel nonionic surfmer. Int J Polym Sci. Article ID 9231837

  33. Bray C, Peltier R, Kim H, Mastrangleo A, Perrier S (2017) Anionic multiblock core cross-linked star copolymers via RAFT polymerization. Polym Chem 8:5513–5524

    Article  CAS  Google Scholar 

  34. Martin L, Gody G, Perrier S (2015) Preparation of complex multiblock copolymers via aqueous RAFT polymerization at room temperature. Polym Chem 6:4875–4886

    Article  CAS  Google Scholar 

  35. Gody G, Maschmeyer T, Zetterlund P-B, Perrier S (2014) Pushing the limit of the RAFT process: multiblock copolymers by one-pot rapid multiple chain extensions at full monomer conversion. Macromolecules 47:3451–3460

    Article  CAS  Google Scholar 

  36. Díaz-Silvestre S, Saldívar-Guerra E, Rivera-Vallejo C, St Thomas C, Cabello-Romero J, Guerrero-Santos R, Jiménez-Regaldo E (2018) Synthesis of associative block copolymers electrolytes via RAFT polymerization. Polym Bull 75(3):891–907

    Article  Google Scholar 

  37. Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756

    Article  CAS  Google Scholar 

  38. Chaduc I, Lansalot M, D’Agosto F, Charleux B (2012) RAFT polymerization of methacrylic acid in water. Macromolecules 45:1241–1247

    Article  CAS  Google Scholar 

  39. Abel AB, McCormick CL (2016) Mechanistic insights into temperature-dependent trithiocarbonate chain-end degradation during the RAFT polymerization of N-arylmethacrylamides. Macromolecules 49:465–474

    Article  CAS  Google Scholar 

  40. López-Pérez L, Maldonado-Textle H, Elizalde-Herrera LE, Telles-Padilla JG, Guerrero-Santos R, Collins S, Jiménez-Reglado EJ, St Thomas C (2019) Methylation of poly(acrylic acid), prepared using RAFT polymerization, with trimethylsilyldiazomethane: a metamorphosis of the thiocarbonyl group to a thiol-end group. Polymer 168:116–125

    Article  Google Scholar 

  41. www3.nd.edu/~hgao/thermal_transitions_of_homopolymers.pdf

  42. Graessley WW (1980) Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21:258–262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the CONACYT for financial support through the project number 255052 and 267962, respectively. Authors also thank M.C. Ricardo Mendoza-Carrizales and M.C. Maria Guadalupe Mendez-Padilla for SEC and DSC characterizations. CST thanks the CONACYT for his nomination as research fellow at CIQA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claude St Thomas or Enrique Jiménez-Regalado.

Ethics declarations

Conflict of interest

Authors declare not competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-López, C.N., Díaz-Silvestre, S., Telles-Padilla, J.G. et al. Synthesis, characterization and rheological properties of multiblock associative copolymers by RAFT technique. Polym. Bull. 77, 2539–2555 (2020). https://doi.org/10.1007/s00289-019-02867-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02867-z

Navigation