Skip to main content

Advertisement

Log in

The synthesis of rGO/RuO2, rGO/PANI, RuO2/PANI and rGO/RuO2/PANI nanocomposites and their supercapacitors

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, reduced graphene oxide (rGO) was obtained by chemical reduction of graphene oxide (GO) using sodium borohydride (NaBH4). Four different nanocomposites rGO/ruthenium oxide (RuO2), rGO/polyaniline (PANI), RuO2/PANI and rGO/RuO2/PANI were chemically synthesized. In addition, PANI-based nanocomposites were synthesized by in situ polymerization technique. Nanocomposites were examined by different methods such as Fourier transform infrared spectroscopy–attenuated transmission reflectance, UV–Vis spectrophotometer, scanning electron microscopy–energy-dispersive X-ray analysis, thermal analysis (TGA–DTA) and transmission electron microscopy. TGA–DTA results show that the decomposition of rGO/RuO2/PANI nanocomposite (27.2% at 788.8 °C) was less than that of rGO (1% at 779.7 °C), which confirms the successful synthesis of nanocomposites. These nanocomposites can be used in supercapacitor applications. Supercapacitor device performances were taken by cyclic voltammetry (CV), galvanostatic constant current and electrochemical impedance spectroscopy (EIS) via two-electrode configuration. Ragone plots were drawn to observe energy and power densities of supercapacitor devices. Stability tests were taken by CV method for 1000 cycles. A ternary rGO/RuO2/PANI nanocomposite yields higher specific capacitance as Csp = 723.09 F g−1 than rGO/RuO2 (Csp = 347.28 F g−1), rGO/PANI (Csp = 159.62 F g−1), RuO2/PANI (Csp = 40.2 F g−1) and rGO (Csp = 37.5 F g−1) at 2 mV/s by CV method. A new electrical circuit model of LR(C(R(CR))) was used to analyze EIS data for rGO, rGO/PANI, rGO/RuO2, RuO2/PANI and rGO/RuO2/PANI nanocomposites. These nanocomposites demonstrate remarkable properties for use as electroactive materials for supercapacitor applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Liu H, Gan WP, Zheng F, Guo GQ, Ma HR, Luo J (2010) Thermal decomposition and capacitive properties of carboxyl ruthenium oxide thin films. Synth React Inorg, Met-Org, Nano-Met Chem 40:499–502

    CAS  Google Scholar 

  2. Zhang H, Cao GP, Wang ZY, Yang YS, Shi ZJ, Gu ZN (2008) Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem Commun 10:1056–1059

    CAS  Google Scholar 

  3. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy 34:4889–4899

    CAS  Google Scholar 

  4. Mu J, Ma G, Peng H, Li J, Sun K, Lei Z (2013) Facile fabrication of self-assembled polyaniline nanotubes doped with D-tartaric acid for high performance supercapacitors. J Power Sources 242:797–802

    CAS  Google Scholar 

  5. Chen YB, Li XM, Bi ZJ, Li GJ, He XL, Gao XD (2018) Stamp-assisted printing of nanotextured electrodes for high-performance flexible planar micro-supercapacitors. Chem Eng J 353:499–506

    CAS  Google Scholar 

  6. Singu BS, Yoon KR (2016) Porous 3D-beta-nickel hydroxide microflowers for electrochemical supercapacitors. J Ind Eng Chem 33:374–380

    CAS  Google Scholar 

  7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  PubMed  Google Scholar 

  8. Stankovich S, Dikin DA, Priner RD, Kohlhaas KA, Kleinhammes A, Yuan Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    CAS  Google Scholar 

  9. Lv W, Tang DM, He YB, You CH, Shi ZQ, Chen XC, Chen CM, Hou PX, Liu C, Yang QH (2009) Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3:3730–3736

    CAS  PubMed  Google Scholar 

  10. Zhang DC, Zhang X, Chen Y, Yu P, Wang CH, Ma YW (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode. J Power Sources 196:5990–5996

    CAS  Google Scholar 

  11. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    CAS  PubMed  Google Scholar 

  12. Shao JJ, Lv W, Yang QH (2014) Self-assembly of graphene oxide at interfaces. Adv Mater 26:5586–5612

    CAS  PubMed  Google Scholar 

  13. Cong HP, Chen JF, Yu SH (2014) Graphene-based macroscopic assemblies and architectures: an emerging material system. Chem Soc Rev 43:7295–7325

    CAS  PubMed  Google Scholar 

  14. Yang XW, Cheng C, Wang YF, Qiu L, Li D (2013) Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341:534–537

    CAS  PubMed  Google Scholar 

  15. Gujar TP, Shinde VR, Lokhande CD, Kim WY, Jung KD, Joo OS (2007) Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochem Commun 9:504–510

    CAS  Google Scholar 

  16. Naoi K, Ishimoto S, Ogihara N, Nakagawa Y, Hatta S (2009) Encapsulation of nanodot ruthenium oxide into KB for electrochemical capacitors. J Electrochem Soc 156:A52–A59

    CAS  Google Scholar 

  17. Borah G, Sharma P (2011) A novel route to size and shape controlled synthesis of DMSO capped ruthenium dioxide nanoparticles. Indian J Chem 50:41–45

    Google Scholar 

  18. Lee SW, Kim BS, Chen S, Shao-Horn Y, Hammond PT (2009) Layer-by layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J Am Chem Soc 131:671–679

    CAS  PubMed  Google Scholar 

  19. Patil UM, Kulkarni SB, Jamadade VS, Lokhande CD (2011) Chemically synthesized hydrous RuO2 thin films for supercapacitor application. J Alloys Compd 509:1677–1682

    CAS  Google Scholar 

  20. Ananth A, Dharaneedharan S, Gandhi MS, Heo MS, Mok YS (2013) Novel RuO2 nanosheets-facile synthesis, characterization and application. Chem Eng J 223:729–736

    CAS  Google Scholar 

  21. Pan H, Li J, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5:654–668

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high performance electrochemical capacitors. Adv Funct Mater 20:3595–3602

    CAS  Google Scholar 

  23. Vijayabala V, Senthikumar N, Nehru K, Karvembu R (2018) Hydrothermal synthesis and characterization of ruthenium oxide nanosheets using polymer additive for supercapacitor applications. J Mater Sci: Mater Electron 29:323–330

    CAS  Google Scholar 

  24. Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788

    CAS  Google Scholar 

  25. Gurunathan K, Amalnerkar DP, Trivedi DC (2003) Synthesis and characterization of conducting polymer composite (PAn/TiO2) for cathode material in rechargeable battery. Mater Lett 57:1642–1648

    CAS  Google Scholar 

  26. Jia W, Segal E, Kornemandel D, Lamhot Y, Narkis M, Siegmann A (2002) Polyaniline DBSA/organophilic clay nanocomposites: synthesis and characterization. Synth Met 128:115–120

    CAS  Google Scholar 

  27. Zhang X, Ji L, Zhang S, Yang W (2007) Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. J Power Sources 173:1017–1023

    CAS  Google Scholar 

  28. Kim BH, Jung JH, Hong SH, Kim JW, Choi HJ, Joo J (2001) Physical characterization of emulsion intercalated polyaniline-clay nanocomposite. Curr Appl Phys 1:112–115

    Google Scholar 

  29. Li Y, Wang B, Chen H, Fenga W (2010) Improvement of the electrochemical properties via poly(3,4-ethylenedioxythiophene) oriented micro/nanorods. J Power Sources 195:3025–3030

    CAS  Google Scholar 

  30. Smotwo SK, Kalra V (2018) Polyaniline-carbon based binder free asymmetric supercapacitor in neutral aqueous electrolyte. Electrochim Acta 268:131–138

    Google Scholar 

  31. Chinnathambi S, Euverink GJW (2018) Polyaniline functionalized electrochemically reduced graphene oxide chemiresistive sensor to monitor the pH in real time during microbial fermentations. Sens Actuators B-Chem 264:38–44

    CAS  Google Scholar 

  32. Meng YN, Wang K, Zhang YJ, Wei ZX (2013) Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv Mater 25:6985–6990

    CAS  PubMed  Google Scholar 

  33. Hafizah MAE, Bimantoro A, Maraf A (2016) Synthesized of conductive polyaniline by solution polymerization technique. Proc Chem 19:162–165

    CAS  Google Scholar 

  34. Zhou HH, Zhi XM, Zhai HJ (2018) A strategy to boost electrochemical properties of the graphene oxide poly(3,4-ethylenedioxythiophene) composites for supercapacitor electrodes. J Mater Sci 53:5215–5228

    Google Scholar 

  35. Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602

    CAS  Google Scholar 

  36. Singu BS, Male U, Srinivasan P, Yoon KR (2017) Preparation and performance of polyaniline-multiwall carbon nanotubes-titanium dioxide ternary composite electrode material for supercapacitors. J Ind Eng Chem 49:82–87

    CAS  Google Scholar 

  37. Hong X, Zhang B, Murphy E, Zou J, Kim F (2007) Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high performance supercapacitors. J Power Sources 343:60–66

    Google Scholar 

  38. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon 14:2929–2934

    Google Scholar 

  39. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1939–1939

    Google Scholar 

  40. Kovtyukhova NI, Oliver PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778

    CAS  Google Scholar 

  41. Wang P, Liu H, Xu Y, Chen Y, Yang J, Tan Q (2016) Supported ultrafine ruthenium oxides with specific capacitance up to 1099 F/g for a supercapacitor. Electrochim Acta 194:211–218

    CAS  Google Scholar 

  42. Zhu P, Yu T, Kang S, Guan S (2016) One step synthesis of spherical polyaniline/graphene composites by micro emulsion for supercapacitors. Int J Electrochem Sci 11:9019–9029

    CAS  Google Scholar 

  43. Loh KP, Bao QL, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    CAS  PubMed  Google Scholar 

  44. Ibrahim KA (2017) Synthesis and characterization of polyaniline and poly(aniline-co-o-nitroaniline) using vibrational spectroscopy. Arab J Chem 10:S2668–S2674

    CAS  Google Scholar 

  45. Davydov AA (2003) Molecular spectroscopy of oxide catalyst surface. Wiley, New York

    Google Scholar 

  46. Lim HN, Huang NM, Lim SS, Harrison I, Chia CH (2011) Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int J Nanomed 6:1817–1823

    CAS  Google Scholar 

  47. Ates M (2015) Comparison of corrosion protection of chemically and electrochemically synthesized poly(N-vinylcarbazole) and its nanocomposites on stainless steel. J Solid State Electrochem 19:533–541

    CAS  Google Scholar 

  48. Dehaudt J, Beouch L, Peralta S, Plesse C, Aubert PH, Chevrot C, Goubard F (2011) Facile route to prepare film of poly(3,4-ethylenedioxythiophene)-TiO2 nanohybrid for solar cell application. Thin Solid Films 519:1876–1881

    CAS  Google Scholar 

  49. Yang YS, Wan MX (2002) Chiral nanotubes of polyaniline synthesized by a template-free method. J Mater Chem 12:897–901

    CAS  Google Scholar 

  50. Konios D, Stylianakis MM, Stratakis E, Kymakis E (2014) Dispersion behavior of graphene oxide and reduced graphene oxide. J Colloid Interface Sci 430:108–112

    CAS  PubMed  Google Scholar 

  51. Rodriquez-Perez L, Herranz MA, Martin N (2013) The chemistry of pristine graphene. Chem Commun 49:3721–3735

    Google Scholar 

  52. Khan U, Porwal H, O’Neill A, Nawaz K, May P, Coleman JN (2011) Solvent-exfoliated graphene at extremely high concentration. Langmuir 27:9077–9082

    CAS  PubMed  Google Scholar 

  53. Xu SH, Li SY, Wei YX, Zhang L, Xu F (2010) Improving the photocatalytic performance of conducting polymer polythiophene sensitized TiO2 nanoparticles under sunlight irradiation. React Kinet Mech Catal 101:237–249

    CAS  Google Scholar 

  54. Dai Q, Li Y, Zhai L, Sun W (2009) 3,4-Ethylenedioxythiophene (EDOT)-based pi-conjugated oligomers: facile synthesis and excited-state properties. J Photochem Photobiol, A 206:164–168

    CAS  Google Scholar 

  55. Chen WC, Liu CL, Yen CT, Tsai FC, Tonzola CT, Olson N, Jenekhe SA (2004) Theoretical and experimental characterization of small band gap poly(3,4-ethylenedioxythiophene methine)s. Macromolecules 37:5959–5964

    CAS  Google Scholar 

  56. Jafari EA, Moradi M, Borhani S, Bigdeli H, Hajati S (2018) Fabrication of hybrid supercapacitor based on rod-like HKUST-1@ polyaniline as cathode and reduced graphene oxide as anode. Physica E 99:16–23

    CAS  Google Scholar 

  57. Stejskal J, Sapurina I, Trchova M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481

    CAS  Google Scholar 

  58. Eren E, Celik G, Uygun A, Tabaciarova J, Omastova M (2012) Synthesis of poly(3,4-ethylenedioxythiophene)/titanium dioxide nanocomposites in the presence of surfactants and their properties. Synth Met 162:1451–1458

    CAS  Google Scholar 

  59. Muniraj VKA, Kamaja CK, Shelke MV (2016) RuO2·nH2O nanoparticles anchored on carbon nano-onions: an efficient electrode for solid state flexible electrochemical supercapacitor. ACS Sustain Chem Eng 4:2528–2534

    CAS  Google Scholar 

  60. Zhuiykov S (2009) In situ FTIR study of oxygen adsorption on nanostructured RuO2 thin film electrode. Ionics 15:507–512

    CAS  Google Scholar 

  61. Salunkhe PH, Patil YS, Patil VB, Navale YH, Phole IA, Dhole VP, Ubale NN, Moldar AA, Ghanwat AA (2018) Synthesis and characterization of conjugated porous polyazomethines with excellent electrochemical energy storage performance. J Polym Res 25:147–162

    Google Scholar 

  62. Petrus ML, Bouwer RKM, Lafont U, Murthy DHK, Kist RJP, Bohm ML, Oliver Y, Savenije TJ, Siebbeles LDA, Greenhamd NC, Dingmans TJ (2013) Conjugated poly(azomethine)s via simple one-step polycondensation chemistry: synthesis, thermal and optoelectronic properties. Polym Chem 4:4182–4191

    CAS  Google Scholar 

  63. Baniasadi H, Ramazani SAA, Mashayekhan S, Ghaderinezhad F (2014) Preparation of conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization. Synth Met 196:199–205

    CAS  Google Scholar 

  64. Jiang F, Zhou T, Tan S, Zhu Y, Liu Y, Yuan D (2009) Porous-polypyrrole prepared by using nanoscale calcium carbonate as a core for supercapacitors. Int J Electrochem Sci 4:1541–1547

    CAS  Google Scholar 

  65. Du F, Zuo X, Yang Q, Li G, Ding Z, Wu M, Ma Y, Jin S, Zhu K (2016) Facile hydrothermal reduction synthesis of porous Co3O4 nanosheets@ RGO nanocomposite and applied as a supercapacitor electrode with enhanced specific capacitance and excellent cycle stability. Electrochim Acta 222:976–982

    CAS  Google Scholar 

  66. Yang WL, Gao Z, Wang J, Wang B, Liu Q, Li ZS, Mann T, Yang PP, Zhang ML, Liu LH (2012) Synthesis of reduced graphene nanosheet/urchin-like manganese dioxide composite and high performance as supercapacitor electrode. Electrochim Acta 69:112–119

    CAS  Google Scholar 

  67. Reddy ALM, Ramaprabhu S (2007) Nanocrystalline metal oxides dispersed multi-walled carbon nanotubes as supercapacitor electrodes. J Phys Chem C 111:7727–7734

    CAS  Google Scholar 

  68. Zhang GQ, Zhao YQ, Tao F, Li HL (2006) Electrochemical characteristics and impedance spectroscopy studies of nano-cobalt silicate hydroxide for supercapacitors. J Power Sources 161:723–729

    CAS  Google Scholar 

  69. Zhang J, Jiang J, Li H, Zhao XS (2011) A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ Sci 4:4009–4015

    CAS  Google Scholar 

  70. Miller JR, Outlaw RA, Holloway BC (2011) Graphene electric double layer capacitor with ultra-high power performance. Electrochim Acta 56:10443–10449

    CAS  Google Scholar 

  71. Buller S, Karden E, Kok D, De Doncker RW (2002) Modeling the dynamic behavior of supercapacitors using impedance spectroscopy. IEEE Trans Ind Appl 38:1622–1626

    Google Scholar 

  72. Ates M, Uludag N, Arican F (2014) Synthesis of 9H-carbazole-9-carbothioic methacrylicthioanhydride, electropolymerization, characterization and supercapacitor applications. Polym Bull 71:1557–1573

    CAS  Google Scholar 

  73. Gnanakan SRP, Murugananthem N, Subramania A (2011) Organic acid doped polythiophene nanoparticles as electrode material for redox supercapacitors. Polym Adv Technol 22:788–793

    CAS  Google Scholar 

  74. Meng Y, Wang K, Zhang Y, Wei Z (2013) Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv Mater 25:6985–6990

    CAS  PubMed  Google Scholar 

  75. Ates M, Bayrak Y, Yoruk O, Caliskan S (2017) Reduced graphene oxide/titanium oxide nanocomposite synthesis via microwave-assisted method and supercapacitor behaviors. J Alloys Compd 728:541–551

    CAS  Google Scholar 

  76. Boukamp BA (2004) Electrochemical impedance spectroscopy in solid state ionics: recent advances. Solid State Ionics 169:65–73

    CAS  Google Scholar 

  77. Zubair NA, Rahman NA, Lim HN, Sulaiman Y (2017) Production of conductive PEDOT-coated PVA-GO composite nanofibers. Nanoscale Res Lett 12:113

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank NABILTEM (Namik Kemal Uni.) for SEM–EDX and FTIR–ATR measurements.

Author information

Authors and Affiliations

Authors

Contributions

The experiments and writing of the manuscript were done for all authors. There is an approval to the final version of the manuscript.

Corresponding author

Correspondence to Murat Ates.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, M., Yildirim, M. The synthesis of rGO/RuO2, rGO/PANI, RuO2/PANI and rGO/RuO2/PANI nanocomposites and their supercapacitors. Polym. Bull. 77, 2285–2307 (2020). https://doi.org/10.1007/s00289-019-02850-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02850-8

Keywords

Navigation