The role of solvent on the formulation of graphene/polyporphyrin hybrid material versus photocatalytic activity


The influence of solvent used to prepare hybrid materials for photocatalytic applications formulated by cyclic bisphenol A/porphyrin copolyformal and graphene is here reported. To this purpose, the polymer is dissolved in different solvents [chloroform, tetrahydrofuran and dimethylformamide (DMF)] and used to impregnate via bath deposition 2D graphene. Depending on the nature of the solvent, polymer coats differently the graphene substrates producing peculiar SEM and AFM data. Microscopic and nanoscopic features of formulated materials were correlated with their photocatalytic activities by using methylene blue degradation test. Data collected under visible-light irradiation reveal as the best photodegradation performance was displayed by graphene coated with DMF copolyporphyrin solution.

Graphic abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Alvarez PJJ, Chan CK, Elimelech M, Halas NJ, Villagrán D (2018) Emerging opportunities for nanotechnology to enhance water security. Nat Nanotechnol 13:634

    Article  CAS  Google Scholar 

  2. 2.

    Sharma M, Joshi M, Nigam S, Shree S, Avasthi DK, Adelung R, Srivastava SK, Mishra YK (2019) ZnO tetrapods and activated carbon based hybrid composite: adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution. Chem Eng J 358:540–551

    Article  CAS  Google Scholar 

  3. 3.

    Demille TB, Hughes RA, Preston AS, Adelung R, Mishra YK, Neretina S (2018) Light-mediated growth of noble metal nanostructures (Au, Ag, Cu, Pt, Pd, Ru, Ir, Rh) from micro- and nanoscale ZnO tetrapodal backbones. Front Chem 6:411

    Article  CAS  Google Scholar 

  4. 4.

    Ahmed SN, Haider W (2018) Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology 29(34):342001

    Article  CAS  Google Scholar 

  5. 5.

    Ussia M, Di Mauro A, Mecca T, Cunsolo F, Nicotra G, Spinella C, Cerruti P, Impellizzeri G, Privitera V, Carroccio SC (2018) ZnO-pHEMA nanocomposites: an ecofriendly and reusable material for water remediation. ACS Appl Mater Interfaces 10:40100–40110

    Article  CAS  Google Scholar 

  6. 6.

    Mishra YK, Adelung R (2018) ZnO tetrapod materials for functional applications. Mater Today 21:631–651

    Article  CAS  Google Scholar 

  7. 7.

    Smazna D, Shree S, Polonskyi O, Lamaka S, Baum M, Zheludkevich M, Faupel F, Adelung R, MishraY K (2019) Mutual interplay of ZnO micro-and nanowires and methylene blue during cyclic photocatalysis process. Biochem Pharmacol 7(2):103016

    CAS  Google Scholar 

  8. 8.

    Dintcheva N Tz, Arrigo R, Carroccio SC, Curcuruto G, Guenzic C, Gambarotti C, Filippone G (2016) Multi-functional polyhedral oligomeric silsesquioxane-functionalized carbon nanotubes for photo-oxidative stable ultra-high molecular weight polyethylene-based nanocomposites. Eur Polym J 75:525–537

    Article  CAS  Google Scholar 

  9. 9.

    Perreault F, Fonseca de Faria A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896

    Article  CAS  Google Scholar 

  10. 10.

    Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  11. 11.

    Zhang N, Yang MQ, Liu S, Sun Y, Xu YJ (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115:10307–10377

    Article  CAS  Google Scholar 

  12. 12.

    Wojcik A, Kamat PV (2010) Reduced graphene oxide and porphyrin: an interactive affair in 2-D. ACS Nano 4:6697–6706

    Article  CAS  Google Scholar 

  13. 13.

    Wei M, Wan J, Hu Z, Peng Z, Wang B (2016) Enhanced photocatalytic degradation activity over TiO2 nanotubes co-sensitized by reduced graphene oxide and copper(II) meso-tetra(4-carboxyphenyl)porphyrin. Appl Surf Sci 377:149–158

    Article  CAS  Google Scholar 

  14. 14.

    Tatykayev B, Donat F, Alem H, Balan L, Medjahdi G, Uralbekov B, Schneider R (2017) Synthesis of core/shell ZnO/rGO nanoparticles by calcination of ZIF-8/rGO composites and their photocatalytic activity. ACS Omega 2:4946–4954

    Article  CAS  Google Scholar 

  15. 15.

    Marin ML, Santos-Juanes L, Arques A, Amat AM, Miranda MA (2012) Organic photocatalysts for the oxidation of pollutants and model compounds. Chem Rev 112:1710–1750

    Article  CAS  Google Scholar 

  16. 16.

    Chen Y, Li A, Huang Z-H, Wang L-N, Kang F (2016) Porphyrin-based nanostructures for photocatalytic applications. Nanomaterials 6:51

    Article  CAS  Google Scholar 

  17. 17.

    Guo P, Chen P, Ma W, Liu M (2012) Morphology-dependent supramolecular photocatalytic performance of porphyrin nanoassemblies: from molecule to artificial supramolecular nanoantenna. J Mater Chem 22:20243

    Article  CAS  Google Scholar 

  18. 18.

    Hasobe T (2012) Photo- and electro-functional self-assembled architectures of porphyrins. Phys Chem Chem Phys 14:15975

    Article  CAS  Google Scholar 

  19. 19.

    Wang J, Zhong Y, Wang L, Zhang N, Cao R, Bian K, Alarid L, Haddad RE, Bai F, Fan H (2016) Morphology-controlled synthesis and metalation of porphyrin nanoparticles with enhanced photocatalytic performance. Nano Lett 16:6523–6528

    Article  CAS  Google Scholar 

  20. 20.

    Zhu M, Li Z, Xiao B, Lu Y, Du Y, Yang P, Wang X (2013) Surfactant assistance in improvement of photocatalytic hydrogen production with the porphyrin noncovalently functionalized graphene nanocomposite. ACS Appl Mater Interfaces 5:1732–1740

    Article  CAS  Google Scholar 

  21. 21.

    Chen Y, Huang Z-H, Yue M, Kang F (2014) Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity. Nanoscale 6:978–985

    Article  CAS  Google Scholar 

  22. 22.

    Han L, Wang P, Dong S (2012) Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst. Nanoscale 4:5814

    Article  CAS  Google Scholar 

  23. 23.

    Lu Q, Zhang Y, Liu S (2015) Graphene quantum dots enhanced photocatalytic activity of zinc porphyrin toward the degradation of Methylene blue under visible-light irradiation. J Mater Chem A Mater Energy Sustain 3:8552–8558

    Article  CAS  Google Scholar 

  24. 24.

    Wang A, Yu W, Huang Z, Zhou F, Song J, Song Y, Long L, Cifuentes MP, Humphrey MG, Zhang L, Shao J, Zhang C (2016) Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance. Sci Rep 6:23325

    Article  CAS  Google Scholar 

  25. 25.

    Karousis N, Sandanayaka ASD, Hasobe T, Economopoulos SP, Sarantopoulou E, Tagmatarchis N (2011) Graphene oxide with covalently linked porphyrin antennae: synthesis, characterization and photophysical properties. J Mater Chem 21:109–117

    Article  CAS  Google Scholar 

  26. 26.

    Yamuna R, Ramakrishnan S, Dhara K, Devi R, Kothurkar NK, Kirubha E, Palanisamy PK (2013) Synthesis, characterization, and nonlinear optical properties of graphene oxide functionalized with tetra-amino porphyrin. J Nanoparticle Res 15:1399

    Article  CAS  Google Scholar 

  27. 27.

    Bala Murali Krishna M, Venkatramaiah N, Venkatesan R, Narayana Rao D (2012) Synthesis and structural, spectroscopic and nonlinear optical measurements of graphene oxide and its composites with metal and metal free porphyrins. J Mater Chem 22:3059

    Article  CAS  Google Scholar 

  28. 28.

    Ge R, Wang X, Zhang C, Kang SZ, Qin L, Li G, Li X (2015) The influence of combination mode on the structure and properties of porphyrin-graphene oxide composites. Colloids Surfaces A Physicochem Eng Asp 483:45–52

    Article  CAS  Google Scholar 

  29. 29.

    Zhang N, Yang MQ, Tang ZR, Xu YJ (2014) Toward improving the graphene-semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator. ACS Nano 8:623–633

    Article  CAS  Google Scholar 

  30. 30.

    Qiu Y, Wang Z, Owens ACE, Kulaots I, Chen Y, Kane AB, Hurt RH (2014) Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale 6:11744–11755

    Article  CAS  Google Scholar 

  31. 31.

    Ussia M, Bruno E, Spina E, Vitalini D, Pellegrino G, Ruffino F, Privitera V, Carroccio SC (2018) Freestanding photocatalytic materials based on 3D graphene and polyporphyrins. Sci Rep 8:1–12

    Article  CAS  Google Scholar 

  32. 32.

    Su W-F (2013) Principles of polymer design and synthesis. Lecture notes in chemistry, vol 82. Springer, Berlin

    Google Scholar 

  33. 33.

    Guang L, Hui W, Xuejun Z (2016) Effect of drying temperatures on structural performance and photocatalytic activity of BiOCl synthesized by a soft chemical method. J Solid State Chem 239:259–264

    Article  CAS  Google Scholar 

  34. 34.

    Sobczyński J, Tønnesen HH, Kristensen S (2013) Influence of aqueous media properties on aggregation and solubility of four structurally related meso-porphyrin photosensitizers evaluated by spectrophotometric measurements. Pharmazie 68:100–109

    PubMed  Google Scholar 

  35. 35.

    Ribeiro VGP, Marcelo AMP, da Silva KT, da Silva FLF, Mota JPF, do Nascimento JPC, do Nascimento JPC, Sombra ASB, da Silva Clemente C, Mele G, Carbone L, Mazzetto SE (2017) New ZnO@Cardanol porphyrin composite nanomaterials with enhanced photocatalytic capability under solar light irradiation. Materials 10:1–16

    Article  CAS  Google Scholar 

  36. 36.

    Duc LD, Bhosale SV, Jones LA, Revaprasadu N, Bhosale SV (2017) Fabrication of a Graphene@TiO@Porphyrin hybrid material and its photocatalytic properties under simulated sunlight irradiation. Chem Sel 2:3329–3333

    Google Scholar 

  37. 37.

    Ahmed MA, Abou-Gamra ZM, Medien HAA, Hamza MA (2017) Effect of porphyrin on photocatalytic activity of TiO2 nanoparticles toward Rhodamine B photodegradation. J Photochem Photobiol B Biol 176:25–35

    Article  CAS  Google Scholar 

  38. 38.

    Park SJ, Das GS, Schütt F, Adelung R, Mishra YK, Tripathi KM, Kim T (2019) Visible-light photocatalysis by carbon- nano-onion-functionalized ZnO tetrapods: degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment. NPG Asia Mater 11:8

    Article  CAS  Google Scholar 

  39. 39.

    Duc LD et al (2017) Arginine-mediated self-assembly of porphyrin on graphene: a photocatalyst for degradation of dyes. Appl Sci 7:643

    Article  CAS  Google Scholar 

Download references


This work was funded by the ESF-Sicilia 2014-2020 call 11/2017 project SENTI (Sensori Elettronici, Nano Tecnologie, Informatica per l’agricoltura di precisione - CIP 2014.IT.05.SFOP.014/3/10.4/9.2.10/0007) coordinated by CNR-IVALSA. The authors wish to thank Dr. Gonçalo Gonçalves, from AIXTRON SE, for his skilful technical assistance.

Author information



Corresponding author

Correspondence to Martina Ussia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1:

10 μm × 10 μm and three-dimensional AFM image of the Ni/Graphene (on top) surface. Figure S2: UV–Vis reflectance spectra of copolymers in CHCl3, THF and DMF. Table S1: The properties of CHCl3, THF and DMF (PDF 2466 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ussia, M., Ruffino, F., Bruno, E. et al. The role of solvent on the formulation of graphene/polyporphyrin hybrid material versus photocatalytic activity. Polym. Bull. 77, 2073–2087 (2020).

Download citation