Skip to main content

Aluminum triflate-cocatalyzed radical copolymerization of styrene and ethyl acrylate

Abstract

Various random copolymers, poly(styrene-co-ethyl acrylate), were synthesized by free radical bulk copolymerization cocatalyzed by aluminum triflate (Al(OTf)3). The experimental conditions for the polymerization reactions, which include the amount of cocatalyst, polymerization time and ratio of styrene to ethyl acrylate, were investigated. The copolymer molecular weights were determined by gel permeation chromatography coupled to multi-angle laser light scattering. Compositional analysis was performed using proton nuclear magnetic resonance spectrometry. Electron paramagnetic resonance spectroscopy was also used to study the radical species which form in the presence or absence of Al(OTf)3. Kinetic studies were performed by determining monomer conversions as a function of time on gas chromatography. It was found that Al(OTf)3 accelerated the rate of polymerization significantly while also increasing the polymer molecular weights for a given conversion compared to the reactions where the triflate was absent. Al(OTf)3 can be a significantly more cost-effective and abundant alternative polymerization cocatalyst compared to some of the rare lanthanide triflates.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Chen Y, Sen A (2009) Effect of Lewis acids on reactivity ratios for meth(acrylate)/nonpolar alkene copolymerizations. Macromolecules 42:3951–3957. https://doi.org/10.1021/ma900450p

    CAS  Article  Google Scholar 

  2. 2.

    McManus NT, Penlidis A (1996) A kinetic investigation of styrene/ethyl acrylate copolymerization. J Polym Sci Part A Polym Chem 34:237–248. https://doi.org/10.1002/(SICI)1099-0518(19960130)34:2<237::AID-POLA10>3.0.CO;2-R

    CAS  Article  Google Scholar 

  3. 3.

    Mahdi Abdollahi M, Shahram Mehdipour-Ataei S, Farshid Ziae F (2007) Using 1H-NMR spectroscopy for the kinetic study of the in situ solution free-radical copolymerization of styrene and ethyl acrylate. J Appl Polym Sci 105:2588–2597. https://doi.org/10.1002/app.26290

    CAS  Article  Google Scholar 

  4. 4.

    Corma A, García H (2003) Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem Rev 103:4307–4365. https://doi.org/10.1021/cr030680z

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Kobayashi S, Nagayama S, Busujima TJ (1998) Lewis acid catalysts stable in water. Correlation between catalytic activity in water and hydrolysis constants and exchange rate constants for substitution of inner-sphere water ligands. Am Chem Soc 120:8287–8288. https://doi.org/10.1021/ja980715q

    CAS  Article  Google Scholar 

  6. 6.

    Koito Y, Nakajima K, Kobayashi H, Hasegawa R, Kitano M, Hara M (2014) Slow reactant-water exchange and high catalytic performance of water-tolerant Lewis acids. Chem Eur J 20:8068–8075. https://doi.org/10.1002/chem.201400240

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Amer I, Young DA (2013) Chemically oxidative polymerization of aromatic diamines: the first use of aluminium-triflate as co-catalyst. Polymer 54:505–512. https://doi.org/10.1016/j.polymer.2012.11.078

    CAS  Article  Google Scholar 

  8. 8.

    Amer I, Young DA, Vosloo HCM (2013) Chemical oxidative polymerization of m-phenylenediamine and its derivatives using aluminium triflate as co-catalyst. Eur Polym J 49:3251–3260. https://doi.org/10.1016/j.eurpolymj.2013.06.031

    CAS  Article  Google Scholar 

  9. 9.

    Isobe Y, Fujioka D, Habaue S, Okamoto YJ (2001) Efficient Lewis acid-catalyzed stereocontrolled radical polymerization of acrylamide. Am Chem Soc 123:7180–7181. https://doi.org/10.1021/ja015888l

    CAS  Article  Google Scholar 

  10. 10.

    Nagel M, Poli D, Sen A (2005) Lewis acid-mediated copolymerization of methyl acrylate and methyl methacrylate with 1-alkenes. Macromolecules 38:7262–7265. https://doi.org/10.1021/ma050705r

    CAS  Article  Google Scholar 

  11. 11.

    Luo R, Sen A (2007) Rate enhancement in controlled radical polymerization of acrylates using recyclable heterogeneous Lewis acid. Macromolecules 40:154–156. https://doi.org/10.1021/ma062341o

    CAS  Article  Google Scholar 

  12. 12.

    Isobe Y, Nakano T, Okamoto YJ (2001) Stereocontrol during the free-radical polymerization of methacrylates with Lewis acids. Polym Sci A Polym Chem 39:1463–1471. https://doi.org/10.1002/pola.1123

    CAS  Article  Google Scholar 

  13. 13.

    Amer I, Young DA, Vosloo HCM (2014) Using aluminium triflate as co-catalyst for the polymerization of o-phenylenediamine and its derivatives. Polym Int 63:1229–1237. https://doi.org/10.1002/pi.4628

    CAS  Article  Google Scholar 

  14. 14.

    Lutz JF, Jakubowski W, Matyjaszewski K (2004) Controlled/living radical polymerization of methacrylic monomers in the presence of Lewis acids: influence on tacticity. Macromol Rapid Commun 25:486–492. https://doi.org/10.1002/marc.200300165

    CAS  Article  Google Scholar 

  15. 15.

    Luo R, Chen Y, Sen AJ (2008) Effects of Lewis and Brønsted acids on the homopolymerization of acrylates and their copolymerization with 1-alkenes. Polym Sci A Polym Chem 46:5499–5505. https://doi.org/10.1002/pola.22870

    CAS  Article  Google Scholar 

  16. 16.

    Hadjikyriacou S, Acar M, Faust R (2004) Living and controlled polymerization with alkylaluminum halides as coinitiators. Macromolecules 37:7543–7547. https://doi.org/10.1021/ma049082s

    CAS  Article  Google Scholar 

  17. 17.

    Belleli PG, Ferreira ML, Damiani DE (2000) Addition of Lewis bases and acids. Effects on α-olefins polymerization with soluble metallocenes, 2 propylene. Macromol Chem Phys 201:1466–1475. https://doi.org/10.1002/1521-3935(20000801)201:13<1466::AID-MACP1466>3.0.CO;2-B

    Article  Google Scholar 

  18. 18.

    Belleli PG, Ferreira ML, Damiani DE (2000) Addition of Lewis bases and acids. Effects on α-olefins polymerization with soluble metallocenes, 1 ethylene. Macromol Chem Phys 201:1458–1465. https://doi.org/10.1002/1521-3935(20000801)201:13<1458::AID-MACP1458>3.0.CO;2-1

    Article  Google Scholar 

  19. 19.

    Carlson RK, Lee RA, Assam JH, King RA, Nagel ML (2015) Free-radical copolymerisation of acrylamides, acrylates, and α-olefins. Mol Phys 113:1809–1822. https://doi.org/10.1080/00268976.2015.1015641

    CAS  Article  Google Scholar 

  20. 20.

    Román-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media. ACS Catal 1:1566–1580. https://doi.org/10.1021/cs200411d

    CAS  Article  Google Scholar 

  21. 21.

    Fringuelli F, Pizzo F, Vaccaro L (2001) Lewis-acid catalyzed organic reactions in water. The case of AlCl3, TiCl4, and SnCl4 believed to be unusable in aqueous medium. J Org Chem 66:4719–4722. https://doi.org/10.1021/jo010373y

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102:3641–3666. https://doi.org/10.1021/cr0103569

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Wyatt PJ (1993) Light scattering and the absolute characterization of macromolecules. Anal Chim Acta 272:1–40. https://doi.org/10.1016/0003-2670(93)80373-S

    CAS  Article  Google Scholar 

  24. 24.

    Lee HC, Chang T (1995) On-line determination of dn/dc for size exclusion chromatography coupled with a light scattering detector. Bull Korean Chem Soc 16:640–643

    CAS  Article  Google Scholar 

  25. 25.

    Sage V, Clark JH, Mcquarrie DJ (2004) Supported copper triflate as catalyst for the cationic polymerization of styrene. J Catal 227:502–511. https://doi.org/10.1016/j.jcat.2004.08.013

    CAS  Article  Google Scholar 

  26. 26.

    Yamada B, Kageoka M, Otsu T (1992) ESR study of the radical polymerization of styrene. Macromolecules 25:4828–4831. https://doi.org/10.1007/BF00944835

    CAS  Article  Google Scholar 

  27. 27.

    Kajiwara A (2008) ESR study of the fundamentals of radical. JEOL News 43:39–49

    Google Scholar 

  28. 28.

    Odian G (2004) Principles of polymerization, 4th edn. Wiley, Hoboken

    Book  Google Scholar 

  29. 29.

    Tsarevsky NV, Matyjaszewski K (2007) Green atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev 107:2270–2299. https://doi.org/10.1021/cr050947p

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Fillipov A, Chernikova E, Golubev V, Gryn'ova G, Lin C, Coote ML (2012) Use of spin trap technique for kinetic investigation if elementary steps of RAFT polymerization. In: Kokorin AI (ed) Nitroxides: theory, experiment and applications. Rijeka, Croatia, pp 407–436

    Google Scholar 

  31. 31.

    Lund A, Danilczuk M (2012) Monomer and polymer radicals of vinyl compounds: EPR and DFT studies of geometric and electronic structures in the adsorbed state. Spectrochim Acta Part A Mol Biomol Spectrosc 98:367–377. https://doi.org/10.1016/j.saa.2012.08.054

    CAS  Article  Google Scholar 

  32. 32.

    Drockenmuller E, Lamps J, Catala J (2004) Living/controlled radical polymerization of ethyl and n-butyl acrylates at 90 °C mediated by sulfinyl nitroxides: influence of the persistent radical stereochemistry. Macromolecules 37:2076–2083. https://doi.org/10.1021/ma0351221

    CAS  Article  Google Scholar 

  33. 33.

    Anseth KS, Anderson KJ, Bowman CN (1996) Radical concentrations, environments, and reactivities during crosslinking polymerizations Macromol. Chem Phys 197:833–848. https://doi.org/10.1002/macp.1996.021970306

    CAS  Article  Google Scholar 

  34. 34.

    Tao Y, He J, Wang Z, Pan J, Jiang H, Chen S, Yang Y (2001) Synthesis of branched polystyrene and poly(styrene-b-4-methoxystyrene) by nitroxyl stable radical controlled polymerization. Macromolecules 34:4742–4748. https://doi.org/10.1002/macp.1996.021970306

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Upenyu Guyo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2690 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guyo, U., Otto, D.P., Young, D.A. et al. Aluminum triflate-cocatalyzed radical copolymerization of styrene and ethyl acrylate. Polym. Bull. 77, 2227–2247 (2020). https://doi.org/10.1007/s00289-019-02847-3

Download citation

Keywords

  • Copolymerization
  • Ethyl acrylate
  • Styrene
  • Aluminum triflate
  • Radical stability
  • GPC
  • NMR
  • EPR