Skip to main content
Log in

Preparation and flocculation properties of biodegradable konjac glucomannan-grafted poly(trimethyl allyl ammonium chloride)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Preparation of konjac glucomannan-grafted poly(trimethyl allyl ammonium chloride) (KGM-g-PTMAAC) was carried out using KGM as polysaccharide matrix and TMAAC as cationic comonomer to develop biodegradable flocculants. The structure of KGM-g-PTMAAC was characterized by FTIR, 13C solid-state NMR, elemental analysis (EA) and SEM. Thermal properties of KGM-g-PTMAAC were studied by thermal gravimetric (TG) analysis. In addition, flocculation properties of KGM-g-PTMAAC were investigated in a kaolin suspension. The results of the FTIR, NMR, and EA showed that the cationic moiety containing quaternary ammonium has been introduced in the backbone of KGM. SEM images indicated that the surface of KGM-g-PTMAAC was rougher than that of KGM. TG results indicated that the thermal stability of KGM-g-PTMAAC was different to that of KGM. The obtained products had a good biodegradable performance. Moreover, the results of the flocculation test showed that KGM-g-PTMAAC could be potentially used as a good flocculating agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Salgot M, Folch M (2018) Wastewater treatment and water reuse. Curr Opin Environ Sci Health 2:64–74

    Google Scholar 

  2. Teh CY, Budiman PM, Shak KPY, Wu TY (2016) Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind Eng Chem Res 55(16):4363–4389

    CAS  Google Scholar 

  3. Zhan Y, Wei R, Zhou H (2018) Improvement on the treatment of thick oil sewage by using integrated biochemical treatment technology. Int J Environ Sci Technol 15(1):81–92

    CAS  Google Scholar 

  4. Wang M, Payne KA, Tong S, Ergas SJ (2018) Hybrid algal photosynthesis and ion exchange (HAPIX) process for high ammonium strength wastewater treatment. Water Res 142:65–74

    CAS  PubMed  Google Scholar 

  5. Burakov AE, Galunin EV, Burakova IV et al (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    CAS  PubMed  Google Scholar 

  6. Peng S, He X, Pan H (2018) Spectroscopic study on transformations of dissolved organic matter in coal-to-liquids wastewater under integrated chemical oxidation and biological treatment process. J Environ Sci 70:206–216

    Google Scholar 

  7. Rossi R, Yang W, Zikmund E, Pant D, Logan BE (2018) In situ biofilm removal from air cathodes in microbial fuel cells treating domestic wastewater. Bioresour Technol 265:200–206

    CAS  PubMed  Google Scholar 

  8. Pal S, Mal D, Singh RP (2005) Cationic starch: an effective flocculating agent. Carbohydr Polym 59(4):417–423

    CAS  Google Scholar 

  9. Zhu H, Zhang Y, Yang X et al (2015) One-step green synthesis of non-hazardous dicarboxyl cellulose flocculant and its flocculation activity evaluation. J Hazard Mater 296:1–8

    CAS  PubMed  Google Scholar 

  10. Renault F, Sancey B, Badot PM, Crini G (2009) Chitosan for coagulation/flocculation processes—an eco-friendly approach. Eur Polym J 45(5):1337–1348

    CAS  Google Scholar 

  11. Banerjee C, Ghosh S, Sen G, Mishra S, Shukla P, Bandopadhyay R (2013) Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant. Carbohydr Polym 92(1):675–681

    CAS  PubMed  Google Scholar 

  12. Dryabina S, Fotina K, Navrotskii A, Novakov I (2017) The flocculation of kaolin aqueous dispersion by two cationic polyelectrolytes. Colloids Surf A 515:12–21

    CAS  Google Scholar 

  13. Ma J, Shi J, Ding L et al (2018) Removal of emulsified oil from water using hydrophobic modified cationic polyacrylamide flocculants synthesized from low-pressure UV initiation. Sep Purif Technol 197:407–417

    CAS  Google Scholar 

  14. Kajihara M, Aoki D, Matsushita Y, Fukushima K (2018) Synthesis and characterization of lignin-based cationic dye-flocculant. J Appl Polym Sci 135(32):46611

    Google Scholar 

  15. El-Naggar ME, Samhan FA, Salama AAA, Hamdy RM, Ali GH (2018) Cationic starch: safe and economic harvesting flocculant for microalgal biomass and inhibiting E. coli growth. Int J Biol Macromol 116:1296–1303

    CAS  PubMed  Google Scholar 

  16. Su Y, Du H, Huo Y et al (2016) Characterization of cationic starch flocculants synthesized by dry process with ball milling activating method. Int J Biol Macromol 87:34–40

    CAS  PubMed  Google Scholar 

  17. Katsuraya K, Okuyama K, Hatanaka K, Oshima R, Sato T, Matsuzaki K (2003) Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydr Polym 53(2):183–189

    CAS  Google Scholar 

  18. Tian D, Zhou Y, Xiong L, Lu F (2017) Synthesis and properties of caffeine molecularly imprinted polymers based on konjac glucomannan. Adv Polym Technol 36(1):68–76

    CAS  Google Scholar 

  19. Zhu F (2018) Modifications of konjac glucomannan for diverse applications. Food Chem 256:419–426

    CAS  PubMed  Google Scholar 

  20. Dai S, Jiang F, Shah NP, Corke H (2017) Stability and phase behavior of konjac glucomannan-milk systems. Food Hydrocoll 73:30–40

    CAS  Google Scholar 

  21. Lei W, Yang Q, Jia X, Zhang T (2010) Preparation and antimicrobial activity of Konjac Glucomannan modified with quaternary ammonium compound. J Appl Polym Sci 118(6):3453–3459

    CAS  Google Scholar 

  22. Yu H, Huang Y, Ying H, Xiao C (2007) Preparation and characterization of a quaternary ammonium derivative of konjac glucomannan. Carbohydr Polym 69(1):29–40

    CAS  Google Scholar 

  23. Wang K, Gao S, Shen C et al (2018) Preparation of cationic konjac glucomannan in NaOH/urea aqueous solution. Carbohydr Polym 181:736–743

    CAS  PubMed  Google Scholar 

  24. Tian D, Wu X, Liu C, Xie H-Q (2010) Synthesis and flocculation behavior of cationic konjac glucomannan containing quaternary ammonium substituents. J Appl Polym Sci 115(4):2368–2374

    CAS  Google Scholar 

  25. Ren WJ, Zhang AQ, Qin SY, Li ZK (2016) Synthesis and evaluation of a novel cationic konjac glucomannan-based flocculant. Carbohydr Polym 144:238–244

    CAS  PubMed  Google Scholar 

  26. Garcia-Valdez O, Champagne P, Cunningham MF (2018) Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Prog Polym Sci 76:151–173

    CAS  Google Scholar 

  27. Shi Z, Jia C, Wang D et al (2019) Synthesis and characterization of porous tree gum grafted copolymer derived from Prunus cerasifera gum polysaccharide. Int J Biol Macromol 133:964–970

    CAS  PubMed  Google Scholar 

  28. Deng F, Zhang Y, Ge X, Li M, Li X, Cho UR (2016) Graft copolymers of microcrystalline cellulose as reinforcing agent for elastomers based on natural rubber. J Appl Polym Sci 133(9)

    Google Scholar 

  29. Li M-C, Lee JK, Cho UR (2012) Synthesis, characterization, and enzymatic degradation of starch-grafted poly(methyl methacrylate) copolymer films. J Appl Polym Sci 125(1):405–414

    CAS  Google Scholar 

  30. Meimoun J, Wiatz V, Saint-Loup R et al (2018) Modification of starch by graft copolymerization. Starch-Stärke 70(1–2):1600351

    Google Scholar 

  31. Huang M, Liu Z, Li A, Yang H (2017) Dual functionality of a graft starch flocculant: flocculation and antibacterial performance. J Environ Manag 196:63–71

    CAS  Google Scholar 

  32. Işıklan N, Kurşun F, İnal M (2009) Graft copolymerization of itaconic acid onto sodium alginate using ceric ammonium nitrate as initiator. J Appl Polym Sci 114(1):40–48

    Google Scholar 

  33. Pal S, Ghorai S, Dash MK, Ghosh S, Udayabhanu G (2011) Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method. J Hazard Mater 192(3):1580–1588

    CAS  PubMed  Google Scholar 

  34. Sasmal D, Singh RP, Tripathy T (2015) Synthesis and flocculation characteristics of a novel biodegradable flocculating agent amylopectin-g-poly(acrylamide-co-N-methylacrylamide). Colloids Surf A 482:575–584

    CAS  Google Scholar 

  35. Hocine T, Benhabib K, Bouras B, Mansri A (2017) Comparative study between new polyacrylamide based copolymer poly(AM-4VP) and a cationic commercial flocculant: application in turbidity removal on semi-industrial pilot. J Polym Environ 26(4):1550–1558

    Google Scholar 

  36. Liu Z, Lu X, Xie J, Feng B, Han Q (2019) Synthesis of a novel tunable lignin-based star copolymer and its flocculation performance in the treatment of kaolin suspension. Sep Purif Technol 210:355–363

    CAS  Google Scholar 

  37. Mu R-J, Yuan Y, Wang L et al (2018) Microencapsulation of Lactobacillus acidophilus with konjac glucomannan hydrogel. Food Hydrocoll 76:42–48

    CAS  Google Scholar 

  38. Phang Y-N, Chee S-Y, Lee C-O, Teh Y-L (2011) Thermal and microbial degradation of alginate-based superabsorbent polymer. Polym Degrad Stab 96(9):1653–1661

    CAS  Google Scholar 

  39. McDowall DJ, Gupta BS, Stannett VT (1984) Grafting of vinyl monomers to cellulose by ceric ion initiation. Prog Polym Sci 10(1):1–50

    CAS  Google Scholar 

  40. Pourjavadi A, Zeidabadi F, Barzegar S (2010) Alginate-based biodegradable superabsorbents as candidates for diclofenac sodium delivery systems. J Appl Polym Sci 118(4):2015–2023

    CAS  Google Scholar 

  41. Vieira MC, Gil AM (2005) A solid state NMR study of locust bean gum galactomannan and Konjac glucomannan gels. Carbohydr Polym 60(4):439–448

    CAS  Google Scholar 

  42. Crescenzi V, Dentini M, Masci G et al (2002) A high field NMR study of the products ensuing from konjak glucomannan C(6)-oxidation followed by enzymatic C(5)-epimerization. Biomacromol 3(6):1343–1352

    CAS  Google Scholar 

  43. Gidley MJ, McArthur AJ, Underwood DR (1991) 13C NMR characterization of molecular structures in powders, hydrates and gels of galactomannans and glucomannans. Food Hydrocoll 5(1):129–140

    CAS  Google Scholar 

  44. Haack V, Heinze T, Oelmeyer G, Kulicke W-M (2002) Starch derivatives of high degree of functionalization, 8. Synthesis and flocculation behavior of cationic starch polyelectrolytes. Macromol Mater Eng 287(8):495–502

    CAS  Google Scholar 

  45. Morita H (1956) Characterization of starch and related polysaccharides by differential thermal analysis. Anal Chem 28(1):64–67

    CAS  Google Scholar 

  46. Singh B, Sharma V, Pal L (2011) Formation of sterculia polysaccharide networks by gamma rays induced graft copolymerization for biomedical applications. Carbohydr Polym 86(3):1371–1380

    CAS  Google Scholar 

  47. Fang R, Cheng X, Xu X (2010) Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater. Bioresour Technol 101(19):7323–7329

    CAS  PubMed  Google Scholar 

  48. Bokias G, Mylonas Y, Staikos G, Bumbu GG, Vasile C (2001) Synthesis and aqueous solution properties of novel thermoresponsive graft copolymers based on a carboxymethylcellulose backbone. Macromolecules 34(14):4958–4964

    CAS  Google Scholar 

  49. Somasundaran P, Runkana V (2005) Investigation of the flocculation of colloidal suspensions by controlling adsorbed layer microstructure and population balance modelling. Chem Eng Res Des 83(7):905–914

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grate for the financial support from the National Natural Science Foundation of China (No: 51263009) and the Project of Team Research for Excellent Mid-Aged and Young Teachers of Higher Education of Hubei Province (No: T201006). We thank Dr. Z. W. Yu and Dr. X. Y. Han for NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dating Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, D., Zhou, Y., An, K. et al. Preparation and flocculation properties of biodegradable konjac glucomannan-grafted poly(trimethyl allyl ammonium chloride). Polym. Bull. 77, 1847–1868 (2020). https://doi.org/10.1007/s00289-019-02836-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02836-6

Keywords

Navigation