Skip to main content
Log in

Evolution of the crystalline and amorphous phases of high-density polyethylene subjected to equal-channel angular pressing

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the current research, physical and morphological properties of high-density polyethylene (HDPE) were investigated after equal-channel angular pressing (ECAP) for up to three passes via route A, in which the sample is pressed without any rotation between individual passes, at the temperature of 80 °C. The results of density, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) represent a decrease in the polymer’s crystallinity after deformation, which is more evident after three passes of ECAP. Moreover, a phenomenological mechanism is proposed to explain the variations of crystallinity after ECAP processing. The occurrence of an additional crystalline peak in the XRD pattern, as well as melting doublet in the DSC curve of three-pass ECAP-deformed sample, demonstrate that some part of the initial orthorhombic crystalline phase of HDPE has been transformed to monoclinic crystal structure after ECAP deformation. Furthermore, a reduction in melting temperature and broadening of crystalline peaks show that the thickness of crystalline lamella may decline in one-pass ECAP-deformed sample, which could significantly affect dynamic mechanical behavior of HDPE. In addition, dilatometry results and observation of the impact-fractured surfaces of deformed samples reveal that oriented structures formed in amorphous and crystalline regions of the workpiece.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lu Y, Men Y-F (2018) Initiation, development and stabilization of cavities during tensile deformation of semicrystalline polymers. Chin J Polym Sci 1–5

  2. Yeh I-C, Andzelm JW, Rutledge GC (2015) Mechanical and structural characterization of semicrystalline polyethylene under tensile deformation by molecular dynamics simulations. Macromolecules 48(12):4228–4239

    Article  CAS  Google Scholar 

  3. Lu Y, Wang Y, Chen R, Zhao J, Jiang Z, Men Y (2015) Cavitation in isotactic polypropylene at large strains during tensile deformation at elevated temperatures. Macromolecules 48(16):5799–5806

    Article  CAS  Google Scholar 

  4. Arezoo S, Tagarielli V, Siviour C, Petrinic N (2013) Compressive deformation of Rohacell foams: effects of strain rate and temperature. Int J Impact Eng 51:50–57

    Article  Google Scholar 

  5. Boumbimba RM, Wang K, Bahlouli N, Ahzi S, Rémond Y, Addiego F (2012) Experimental investigation and micromechanical modeling of high strain rate compressive yield stress of a melt mixing polypropylene organoclay nanocomposites. Mech Mater 52:58–68

    Article  Google Scholar 

  6. Rajamanickam R, Kumari S, Kumar D, Ghosh S, Kim JC, Tae G, Sen Gupta S, Kumaraswamy G (2014) Soft colloidal scaffolds capable of elastic recovery after large compressive strains. Chem Mater 26(17):5161–5168

    Article  CAS  Google Scholar 

  7. Wu X, Pu L, Xu Y, Shi J, Liu X, Zhong Z, Luo S-N (2018) Deformation of high density polyethylene by dynamic equal-channel-angular pressing. RSC Advances 8(40):22583–22591

    Article  CAS  Google Scholar 

  8. Ward IM (2012) Structure and properties of oriented polymers. Springer, Berlin

    Google Scholar 

  9. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51(7):881–981

    Article  CAS  Google Scholar 

  10. Bouaksa F, Rodas CO, Zaïri F, Stoclet G, Naït-Abdelaziz M, Gloaguen J-M, Tamine T, Lefebvre J-M (2014) Molecular chain orientation in polycarbonate during equal channel angular extrusion: experiments and simulations. Comput Mater Sci 85:244–252

    Article  CAS  Google Scholar 

  11. Sue H-J, Li CK-Y (1998) Control of orientation of lamellar structure in linear low density polyethylene via a novel equal channel angular extrusion process. J Mater Sci Lett 17(10):853–856

    Article  CAS  Google Scholar 

  12. Beloshenko V, Voznyak YV, Reshidova IY, Naït-Abdelaziz M, Zaïri F (2013) Equal-channel angular extrusion of polymers. J Polym Res 20(12):322

    Article  Google Scholar 

  13. Sue HJ, Dilan H, Li CKY (1999) Simple shear plastic deformation behavior of polycarbonate plate due to the equal channel angular extrusion process. I: Finite element methods modeling. Polym Eng Sci 39(12):2505–2515

    Article  CAS  Google Scholar 

  14. Boulahia R, Gloaguen J-M, Zaïri F, Naït-Abdelaziz M, Seguela R, Boukharouba T, Lefebvre J-M (2009) Deformation behaviour and mechanical properties of polypropylene processed by equal channel angular extrusion: effects of back-pressure and extrusion velocity. Polymer 50(23):5508–5517

    Article  CAS  Google Scholar 

  15. Wang T, Tang S, Chen J (2011) Effects of processing route on morphology and mechanical behavior of polypropylene in equal channel angular extrusion. J Appl Polym Sci 122(3):2146–2158

    Article  CAS  Google Scholar 

  16. Aour B, Zaïri F, Naït-Abdelaziz M, Gloaguen J-M, Rahmani O, Lefebvre J-M (2008) A computational study of die geometry and processing conditions effects on equal channel angular extrusion of a polymer. Int J Mech Sci 50(3):589–602

    Article  Google Scholar 

  17. Xia Z, Sue HJ, Hsieh AJ, Huang JWL (2001) Dynamic mechanical behavior of oriented semicrystalline polyethylene terephthalate. J Polym Sci, Part B: Polym Phys 39(12):1394–1403

    Article  CAS  Google Scholar 

  18. Weon JI, Creasy TS, Sue HJ, Hsieh AJ (2005) Mechanical behavior of polymethylmethacrylate with molecules oriented via simple shear. Polym Eng Sci 45(3):314–324

    Article  CAS  Google Scholar 

  19. Beloshenko V, Varyukhin V, Voznyak A, Voznyak YV (2010) Equal-channel multiangular extrusion of semicrystalline polymers. Polym Eng Sci 50(5):1000–1006

    Article  CAS  Google Scholar 

  20. Beloshenko VA, Voznyak AVV, Voznyak Y, Dudarenko GV (2013) Equal-channel multiple angular extrusion of polyethylene. J Appl Polym Sci 127(2):1377–1386

    Article  CAS  Google Scholar 

  21. Li C-Y, Xia Z-Y, Sue H-J (2000) Simple shear plastic deformation behavior of polycarbonate plate II. Mech Prop Charact Polym 41(16):6285–6293

    CAS  Google Scholar 

  22. Sperling LH (2005) Introduction to physical polymer science. Wiley, Hoboken

    Book  Google Scholar 

  23. Richardson M, Flory P, Jackson J (1963) Crystallization and melting of copolymers of polymethylene. Polymer 4:221–236

    Article  CAS  Google Scholar 

  24. Raabe D, Chen N, Chen L (2004) Crystallographic texture, amorphization, and recrystallization in rolled and heat treated polyethylene terephthalate (PET). Polymer 45(24):8265–8277

    Article  CAS  Google Scholar 

  25. Beausir B, Suwas S, Toth LS, Neale KW, Fundenberger J-J (2008) Analysis of texture evolution in magnesium during equal channel angular extrusion. Acta Mater 56(2):200–214

    Article  CAS  Google Scholar 

  26. Abareshi M, Zebarjad SM, Goharshadi E (2009) Crystallinity behavior of MDPE-clay nanocomposites fabricated using ball milling method. J Compos Mater 43(23):2821–2830

    Article  CAS  Google Scholar 

  27. Alberola N, Perez J (1991) Microstructural changes induced in linear polyethylene by plastic deformation (rolling). J Mater Sci 26(11):2921–2929

    Article  CAS  Google Scholar 

  28. Russell K, Hunter B, Heyding R (1997) Monoclinic polyethylene revisited. Polymer 38(6):1409–1414

    Article  CAS  Google Scholar 

  29. Xia Z-Y, Sue H-J, Rieker T (2000) Morphological evolution of poly (ethylene terephthalate) during equal channel angular extrusion process. Macromolecules 33(23):8746–8755

    Article  CAS  Google Scholar 

  30. Xia K, Wang J (2001) Shear, principal, and equivalent strains in equal-channel angular deformation. Metall Mater Trans A 32(10):2639–2647

    Article  Google Scholar 

  31. Mokarizadeh Haghighi Shirazi M, Zebarjad SM, Ebrahimi R (2018) Effect of equal channel angular pressing on thermal and mechanical properties of carbon nanotube/high density polyethylene composite. Polym Adv Technol 29(2):736–745

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Research Council Office of Shiraz University through Grant Number of 93-GR-ENG-15. Also, the authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mojtaba Zebarjad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokarizadeh Haghighi Shirazi, M., Khajouei-Nezhad, M., Zebarjad, S.M. et al. Evolution of the crystalline and amorphous phases of high-density polyethylene subjected to equal-channel angular pressing. Polym. Bull. 77, 1681–1694 (2020). https://doi.org/10.1007/s00289-019-02827-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02827-7

Keywords

Navigation