Skip to main content
Log in

Green asphalt construction with improved stability and dynamic mechanical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Green road concept encourages optimum utilization of local resources as one of the important indicators of the sustainable development. The form of re-utilization of material is economic and environmentally friendly. In this research, environmentally friendly green asphalt was prepared for road construction by mixing with waste poly(ethylene terephthalate) (WPET). This work starts with glycolysis of WPET followed by synthesis of unsaturated polyester (UP). Different types of glycols, namely diethylene glycol, triethylene glycol and propylene glycol, were used and blended with asphalt binder to obtain an eco-friendly modifier of asphalt 60/70. The modifiers were used in percentages of 4% and 8% (wt/wt) to obtain modified asphalt binder with desirable physical and engineering properties. The prepared UPs were characterized using FTIR, GPC and TGA. The prepared modified asphalt samples were evaluated for physical, chemical, colloidal stability, TGA and rutting resistance using dynamic shear rheometer. The results showed an improvement in asphalt properties which became more thermal stable, resistant to rutting and plastic deformation causing the susceptibility of asphalt to operate in different climates which means obtaining eco-friendly green asphalt with enhanced dynamic mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mulmi AD (2009) Green road approach in rural road construction for the sustainable development of Nepal. J Sustain Dev 2(3):149

    Article  Google Scholar 

  2. Ji LN (2013) Study on preparation process and properties of polyethylene terephthalate (PET). Appl Mech Mater 312:406–410. https://doi.org/10.4028/www.scientific.net/AMM.312.406

    Article  Google Scholar 

  3. Leng Z, Sreeram A, Padhan RK, Tan Z (2018) Value-added application of waste PET based additives in bituminous mixtures containing high percentage of reclaimed asphalt pavement (RAP). J Clean Prod 196:615–625

    Article  CAS  Google Scholar 

  4. Sarker M, Rashid MM (2013) Thermal degradation of poly(ethylene terephthalate) waste soft drinks bottles and low density polyethylene grocery bags. Int J Sustain Energy Environ 1:78–86

    Google Scholar 

  5. Luo X, Li Y (2014) Synthesis and characterization of polyols and polyurethane foams from PET waste and crude glycerol. J Polym Environ 22(3):318–328

    Article  CAS  Google Scholar 

  6. Vaidya UR, Nadkarni VM (1987) Unsaturated polyesters from PET waste: kinetics of polycondensation. J Appl Polym Sci 34(1):235–245

    Article  CAS  Google Scholar 

  7. Patel MR, Patel JV, Mishra D, Sinha VK (2007) Synthesis and characterization of low volatile content polyurethane dispersion from depolymerised polyethylene terphthalate. J Polym Environ 15(2):97–105

    Article  CAS  Google Scholar 

  8. Pingale ND, Palekar VS, Shukla SR (2010) Glycolysis of postconsumer polyethylene terephthalate waste. J Appl Polym Sci 115(1):249–254

    Article  CAS  Google Scholar 

  9. Sinha V, Patel MR, Patel JV (2010) PET waste management by chemical recycling: a review. J Polym Environ 18(1):8–25

    Article  CAS  Google Scholar 

  10. Ahmadinia E, Zargar M, Karim MR, Abdelaziz M, Shafigh P (2011) Using waste plastic bottles as additive for stone mastic asphalt. Mater Des 32(10):4844–4849

    Article  CAS  Google Scholar 

  11. Garcia-Morales M, Partal P, Navarro FJ, Gallegos C (2006) Effect of waste polymer addition on the rheology of modified bitumen. Fuel 85(7–8):936–943

    Article  CAS  Google Scholar 

  12. Ameri M, Nasr D (2016) Properties of asphalt modified with devulcanized polyethylene terephthalate. Pet Sci Technol 34(16):1424–1430

    Article  CAS  Google Scholar 

  13. Sulyman M, Haponiuk J, Formela K (2016) Utilization of recycled polyethylene terephthalate (PET) in engineering materials: a review. Int J Environ Sci Dev 7(2):100

    Article  CAS  Google Scholar 

  14. Padhan RK, Gupta AA, Badoni RP, Bhatnagar AK (2013) Poly(ethylene terephthalate) waste derived chemicals as an antistripping additive for bitumen—An environment friendly approach for disposal of environmentally hazardous material. Polym Degrad Stab 98(12):2592–2601

    Article  CAS  Google Scholar 

  15. Gürü M, Çubuk MK, Arslan D, Farzanian SA, Bilici I (2014) An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material. J Hazard Mater 279:302–310

    Article  Google Scholar 

  16. Yang P, Cong Q, Liao K (2003) Application of solubility parameter theory in evaluating the aging resistance of paving asphalts. Pet Sci Technol 21(11–12):1843–1850

    Article  CAS  Google Scholar 

  17. Oyekunle LO (2006) Certain relationships between chemical composition and properties of petroleum asphalts from different origin. Oil Gas Sci Technol Revue de l’IFP 61(3):433–441

    Article  CAS  Google Scholar 

  18. Oliver JWH (2009) Changes in the chemical composition of Australian bitumens. Road Mater Pavement Des 10(3):569–586

    Article  Google Scholar 

  19. Paliukaite M, Vaitkus A, Zofka A (2014) Evaluation of bitumen fractional composition depending on the crude oil type and production technology. In: Environmental engineering. Proceedings of the international conference on environmental engineering. ICEE, vol 9. Vilnius Gediminas Technical University, Department of Construction Economics and Property, p 1

  20. ASTM D5 (2013) Standard test method for penetration of bituminous materials, vol 04-03. ASTM International, West Conshohocken. www.astm.org

  21. ASTM D36 (2014) Standard test method for softening point of bitumen (ring-and-ball apparatus), vol 04-03. ASTM International, West Conshohocken. www.astm.org

  22. ASTM D113 (2017) Standard test method for ductility of asphalt materials, vol 04-03. ASTM International, West Conshohocken. www.astm.org

  23. ASTM E2550 (2017) Standard test method for thermal stability by thermogravimetry, vol 04-03. ASTM International, West Conshohocken. www.astm.org

  24. AASHTO (2012) Standard method of test for determining the rheological properties of asphalt binder using a dynamic shear rheometer (DSR). American Association of State and Highway Transportation Officials

  25. Moghaddam TB, Soltani M, Karim MR (2014) Evaluation of permanent deformation characteristics of unmodified and polyethylene terephthalate modified asphalt mixtures using dynamic creep test. Mater Des 53:317–324

    Article  Google Scholar 

  26. Tahvildari K, Mozafari S, Tarinsun N (2010) Chemical recycling of poly ethylene terphthalat to obtain unsaturated polyester resins. J Appl Chem Res 12:59–68

    Google Scholar 

  27. Abdelaal MY, Sobahi TR, Makki MSI (2011) Chemical transformation of PET waste through glycolysis. Constr Build Mater 25(8):3267–3271

    Article  Google Scholar 

  28. Siggia S, Hanna JG (1978) Quantitative organic analysis via functional groups. Wiley, Hoboken

    Google Scholar 

  29. ASTM D4662 (2015) Standard test methods for polyurethane raw materials: determination of acid and alkalinity numbers of polyols, vol 08-02. ASTM International, West Conshohocken. www.astm.org

  30. Nikles DE, Farahat MS (2005) New motivation for the depolymerization products derived from poly(ethylene terephthalate) (PET) waste: a review. Macromol Mater Eng 290(1):13–30

    Article  CAS  Google Scholar 

  31. Mothé MG, Leite LF, Mothé CG (2008) Thermal characterization of asphalt mixtures by TG/DTG, DTA and FTIR. J Therm Anal Calorim 93(1):105–109

    Article  Google Scholar 

  32. Al-Khateeb GG, Ramadan KZ (2015) Investigation of the effect of rubber on rheological properties of asphalt binders using superpave DSR. KSCE J Civ Eng 19(1):127–135

    Article  Google Scholar 

  33. AASHTO, T315 (2012) Standard method of test for determining the rheological properties of asphalt binder using a dynamic shear rheometer (DSR)

  34. Al-Sabagh AM, Yehia FZ, Eshaq G, Rabie AM, ElMetwally AE (2016) Greener routes for recycling of polyethylene terephthalate. Egypt J Pet 25(1):53–64

    Article  Google Scholar 

  35. Atta AM, Abdel-Raouf ME, Elsaeed SM, Abdel-Azim AAA (2007) Mechanical characterization and chemical resistances of cured unsaturated polyester resins modified with vinyl ester resins based on recycled poly(ethylene terephthalate). J Appl Polym Sci 103(5):3175–3182

    Article  CAS  Google Scholar 

  36. Ragab AA, Farag RK, Kandil UF, El-Shafie M, Saleh AMM, El-Kafrawy AF (2016) Thermo-mechanical properties improvement of asphalt binder by using methylmethacrylate/ethylene glycol dimethacrylate. Egypt J Pet 25(3):397–407

    Article  Google Scholar 

  37. Ehinola OA, Falode OA, Jonathan G (2012) Softening point and Penetration Index of bitumen from parts of Southwestern Nigeria. Nafta 63(9–10):319–323

    CAS  Google Scholar 

  38. Leng Z, Padhan RK, Sreeram A (2018) Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt. J Clean Prod 180:682–688

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramy M. Abdel-monem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Bary, E.M., Farag, R.K., Ragab, A.A. et al. Green asphalt construction with improved stability and dynamic mechanical properties. Polym. Bull. 77, 1729–1747 (2020). https://doi.org/10.1007/s00289-019-02821-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02821-z

Navigation