Skip to main content
Log in

Novel phosphonate-based phosphorus–nitrogen flame retardants and their use as synergists when applied with OP1240 in glass fiber-reinforced poly(butylene terephthalate)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In an attempt to investigate the synergies between aluminum diethylphosphinate (AlPi) and phosphonate-based phosphorus–nitrogen (P–N) flame retardants (FRs) in glass fiber-reinforced poly(butylene terephthalate) (GF-PBT), novel piperazine analogue-based P–N FRs were synthesized. The thermal degradation and flame-retarding performance when cooperating with a commercial AlPi product, Exolit OP 1240, were determined, and their synergistic results were compared with a well-known melamine polyphosphate (MPP) synergist. As a result of TGA, SEM, and FTIR analyses, it was found that the phosphonate-based P–N FRs yielded improved synergism even with a lower P % content loading compared to MPP. To achieve a V-0 rating, the P content loading of piperazine analogue-based P–N FRs was 0.43% in the GF-PBT/OP1240 mixture at a 13.3 phr loading while that of MPP should be higher than 0.53% in the same formulation. The P content is the governing factor in the fire-retarding efficiency of phosphonate-based P–N FRs, which was well correlated with OP1240 in the gas phase. It is demonstrated that the combination of piperazine analogue-based P–N FRs with OP1240 significantly improves both thermal stability and flame retardancy of GF-PBT material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. Pearce EM, Liepins R (1975) Flame Retardants. Environ Health Perspect 11:59–69

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Levchik SV, Weil ED (2006) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364. https://doi.org/10.1177/0734904106068426

    Article  CAS  Google Scholar 

  3. Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712. https://doi.org/10.1016/S0079-6700(02)00018-7

    Article  CAS  Google Scholar 

  4. Levchik SV, Weil ED (2004) Thermal decomposition, combustion and flame—retardancy of epoxy resins—a review of the recent literature. Polym Int 53:1901–1929. https://doi.org/10.1002/pi.1473

    Article  CAS  Google Scholar 

  5. Kim J, Lee KH, Lee KW, Bae JY, Yang JH, Hong SH (2003) Studies on the thermal stabilization enhancement of ABS; synergistic effect of triphenyl phosphate nanocomposite, epoxy resin, and silane coupling agent mixtures. Polym Degrad Stab 79:201–207. https://doi.org/10.1016/S0141-3910(02)00272-0

    Article  CAS  Google Scholar 

  6. Suzanne M, Ramani A, Ukleja S, McKee M, Zhang J, Delichatsios MA, Patel P, Clarke P, Cusack P (2018) Fire performance of brominated and halogen-free flame retardants in glass-fiber reinforced poly(butylene terephthalate). Fire Mater 42:18–27. https://doi.org/10.1002/fam.2453

    Article  CAS  Google Scholar 

  7. Hoang DQ, Kim J, Jang BN (2008) Synthesis and performance of cyclic phosphorus-containing flame retardants. Polym Degrad Stab 93:2042–2047. https://doi.org/10.1016/j.polymdegradstab.2008.02.017

    Article  CAS  Google Scholar 

  8. Vothi H, Nguyen C, Lee K, Kim J (2010) Thermal stability and flame retardancy of novel phloroglucinol based organo phosphorus compound. Polym Degrad Stab 95:1092–1098. https://doi.org/10.1016/j.polymdegradstab.2010.02.024

    Article  CAS  Google Scholar 

  9. Murashko EA, Levchik GF, Levchik SV, Bright DA, Dashevsky S (1999) Fire-retardant action of resorcinol bis(diphenyl phosphate) in PC—ABS blend. II. Reactions in the condensed phase. J Appl Polym Sci 71:1863–1872. https://doi.org/10.1002/(SICI)1097-4628(19990314)71:11%3c1863:AID-APP17%3e3.0.CO;2-O

    Article  CAS  Google Scholar 

  10. Weil ED, Zhu W, Patel N, Mukhopadhyay SM (1996) A systems approach to flame retardancy and comments on modes of action. Polym Degrad Stab 54:125–136. https://doi.org/10.1016/S0141-3910(96)00036-5

    Article  CAS  Google Scholar 

  11. Price D, Cunliffe LK, Bullett KJ, Hull TR, Milnes GJ, Ebdon JR, Hunt BG, Joseph P (2007) Thermal behavior of covalently bonded phosphate and phosphonate flame retardant polystyrene systems. Polym Degrad Stab 92:1101–1114. https://doi.org/10.1016/j.polymdegradstab.2007.02.003

    Article  CAS  Google Scholar 

  12. Jenewein E, Kleiner HJ, Wanzke W, Budzinsky W (to Clariant). PCT Patent Application US 6365071; 2002

  13. Kleiner HJ, Budzinsky W (to Ticona). PCT Patent Application US 6270560; 2001

  14. Braun U, Schartel B, Fichera M-A, Jager C (2007) Flame retardancy mechanisms of aluminum phosphinate in combination with melamine polyphosphate and zinc borate in glass-fiber reinforced polyamide 6,6. Polym Degrad Stab 92:1528–1545. https://doi.org/10.1016/j.polymdegradstab.2007.05.007

    Article  CAS  Google Scholar 

  15. Gallo E, Braun U, Schartel B, Russo P, Acierno D (2009) Halogen-free flame retarded poly(butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminum phosphinate. Polym Degrad Stab 94:1245–1253. https://doi.org/10.1016/j.polymdegradstab.2009.04.014

    Article  CAS  Google Scholar 

  16. Braun U, Bahr H, Sturm H, Schartel B (2008) Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): the influence of metal cation. Polym Adv Technol 19:680–692. https://doi.org/10.1002/pat.1147

    Article  CAS  Google Scholar 

  17. Braun U, Schartel B (2008) Flame retardancy mechanisms of aluminum phosphinate in combination with melamine cyanurate in glass-fiber-reinforced poly(1,4-butylene terephthalate). Macromol Mater Eng 293:206–217. https://doi.org/10.1002/mame.200700330

    Article  CAS  Google Scholar 

  18. Schlosser E, Nass B, Wanzke W (to Clariant), US Patent 6255371 (2001)

  19. Liu P, Chen W, Liu Y, Bai S, Wang Q (2014) Thermal melt processing to prepare halogen-free flame retardant poly(vinyl alcohol). Polym Degrad Stab 109:261–269. https://doi.org/10.1016/j.polymdegradstab.2014.07.021

    Article  CAS  Google Scholar 

  20. Sullalti S, Colonna M, Berti C, Fiorini M, Karanam S (2012) Effect of phosphorus based flame retardants on UL94 and Comparative Tracking Index properties of poly(butylene terephthalate). Polym Degrad Stab 97:566–572. https://doi.org/10.1016/j.polymdegradstab.2012.01.015

    Article  CAS  Google Scholar 

  21. Yang W, Song L, Hu Y (2013) Comparative study on thermal decomposition and combustion behavior of glass-fiber reinforced poly(1,4-butylene terephthalate) composites containing trivalent metal (Al, La, Ce) hypophosphite. Polym Compos 34:1832–1839. https://doi.org/10.1002/pc.22588

    Article  CAS  Google Scholar 

  22. Ramani A, Dahoe AE (2014) On the performance and mechanism of brominated and halogen free flame retardants in formulations of glass fibre reinforced poly(butylene terephthalate). Polym Degrad Stab 104:71–86. https://doi.org/10.1016/j.polymdegradstab.2014.03.021

    Article  CAS  Google Scholar 

  23. Rabe S, Chuenban Y, Schartel B (2017) Exploring the modes of action of phosphorus-based flame retardants in polymeric systems. Materials 10:455. https://doi.org/10.3390/ma10050455

    Article  CAS  PubMed Central  Google Scholar 

  24. Lorenzetti A, Modesti M, Besco S, Hrelja D, Donadi S (2011) Influence of phosphorus valency on thermal behaviour of flame retarded polyurethane foams. Polym Degrad Stab 96:1455–1461. https://doi.org/10.1016/j.polymdegradstab.2011.05.012

    Article  CAS  Google Scholar 

  25. Braun U, Balabanovich AI, Schartel B, Knoll U, Artner J, Ciesielski M, Doring M, Perez R, Sandler JKW, Altstadt V, Hoffmann T, Pospiech D (2006) Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer 47:8495–8508. https://doi.org/10.1016/j.polymer.2006.10.022

    Article  CAS  Google Scholar 

  26. Henrik S, Erik D, Ulrike B (2013) Flame retardancy of glass fiber reinforced high temperature polyamide by use of aluminum diethylphosphinate: thermal and thermo-oxidative effects. Polym Inter 62:1608–1616. https://doi.org/10.1002/pi.4497

    Article  CAS  Google Scholar 

  27. Samyn F, Bourbigot S (2012) Thermal decomposition of flame retarded formulations PA6/aluminum phosphinate/melamine polyphosphate/organomodified clay: interactions between the constituents? Polym Degrad Stab 97:2217–2230. https://doi.org/10.1016/j.polymdegradstab.2012.08.004

    Article  CAS  Google Scholar 

  28. Nguyen C, Kim J (2008) Thermal stabilities and flame retardancies of nitrogen–phosphorus flame retardants based on bisphosphoramidates. Polym Degrad Stab 93:1037–1043. https://doi.org/10.1016/j.polymdegradstab.2008.03.024

    Article  CAS  Google Scholar 

  29. Levchik SV, Weil ED (2004) A review on thermal decomposition and combustion of thermoplastic polyesters. Polym Adv Technol 15:691–700. https://doi.org/10.1002/pat.526

    Article  CAS  Google Scholar 

  30. Nguyen C, Lee M, Kim J (2011) Relationship between structures of phosphorus compounds and flame retardancies of the mixtures with acrylonitrile–butadiene–styrene and ethylene–vinyl acetate copolymer. Polym Adv Technol 22:512–519. https://doi.org/10.1002/pat.1542

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support provided by Cheil Industries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DongQuy Hoang or Jinhwan Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vothi, H., Nguyen, C., Hoang, D. et al. Novel phosphonate-based phosphorus–nitrogen flame retardants and their use as synergists when applied with OP1240 in glass fiber-reinforced poly(butylene terephthalate). Polym. Bull. 77, 1503–1518 (2020). https://doi.org/10.1007/s00289-019-02818-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02818-8

Keywords

Navigation