2,7-Linked N-methylcarbazole copolymers by combining the macromonomer approach and the oxidative electrochemical polymerization


The preparation of copolymers bearing N-methylcarbazole and 2,7-linked 3,4-ethylenedioxythiophene units has been carried out using the N-methyl-2,7-di(2-(3,4-ethylenedioxythienyl))carbazole monomer, which has been chemically synthesized through the Stille coupling reaction of 2,7-dibromo-N-methylcarbazole and tributyl-stannylated 3,4-ethylenedioxythiophene. Then, the monomer was electropolymerized by chronoamperometry in acetonitrile with 0.1 M LiClO4 under a constant potential of 0.70 V and using steel AISI 316 electrodes. The electrochemical activity and stability, charge–discharge capacity, charge transfer resistance and surface properties (i.e. morphology, topography and wettability) of the resulting polymer have been characterized and compared with those reported for poly(3,4-ethylenedioxythiophene). Finally, the polymer has been obtained by potentiodynamic sweep, applying around 100 cyclic voltammetry steps to an acetonitrile solution of the N-methyl-2,7-di(2-(3,4-ethylenedioxythienyl))carbazole monomer with 0.1 M LiClO4. Results show that although this technique has been mostly used to electropolymerize diheteroaromatic-subtituted carbazoles, the resulting material presents serious disadvantages with respect to that produced by chronoamperometry under a constant potential.

Graphical abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Skotheim TA, Reynolds JR (2007) Handbook of conducting polymers, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  2. 2.

    Inzelt G (2008) Conducting polymers—a new era of electrochemistry. Springer, Heidelberg

    Google Scholar 

  3. 3.

    Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of conducting polymers—persistent models and new concepts. Chem Rev 110:4724–4771. https://doi.org/10.1021/cr900226k

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Fuchigami T, Atobe M, Inagi S (2014) Fundamentals and applications of organic electrochemistry: synthesis, materials, devices. Wiley, Hoboken

    Google Scholar 

  5. 5.

    Groenendaal L, Zotti G, Aubert P-H, Waybright SM, Reynolds JR (2003) Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv Mat 15:855–879. https://doi.org/10.1002/adma.200300376

    CAS  Article  Google Scholar 

  6. 6.

    Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and Its derivatives: past, present, and future. Adv Mat 12:481–494. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7%3c481:AID-ADMA481%3e3.0.CO;2-C

    CAS  Article  Google Scholar 

  7. 7.

    Kirchmeyer S, Reuter K (2005) Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem 15:2077–2088. https://doi.org/10.1039/B417803N

    CAS  Article  Google Scholar 

  8. 8.

    Alemán C, Casanovas J (2004) Theoretical investigation of the 3,4-ethylenedioxythiophene dimer and unsubstituted heterocyclic derivatives. J Phys Chem A 108:1440–1447. https://doi.org/10.1021/jp0369600

    CAS  Article  Google Scholar 

  9. 9.

    Hui Y, Bian C, Xia SH, Tong JH, Wang JF (2018) Synthesis and electrochemical sensing application of poly(3,4-ethylenedioxythiophene)-based materials: a review. Anal Chim Acta 1022:1–19. https://doi.org/10.1016/j.aca.2018.02.080

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Poater J, Casanovas J, Sola M, Alemán C (2010) Examining the planarity of poly(3,4-ethylenedioxythiophene): consideration of self-rigidification, electronic, and geometric effects. J Phys Chem A 114:1023–1028. https://doi.org/10.1021/jp908764s

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T (2015) Recent progress on PEDOT-based thermoelectric materials. Materials 8:732–750. https://doi.org/10.3390/ma8020732

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Anno H, Nishinaka T, Hokazono M, Oshima N, Toshima N (2015) Thermoelectric power-generation characteristics of PEDOT:PSS thin-film devices with different thicknesses on polyimide substrates. J Electron Mater 44:2105–2112. https://doi.org/10.1007/s11664-015-3668-x

    CAS  Article  Google Scholar 

  13. 13.

    Eom SH, Senthilarasu S, Uthirakumar P, Yoon SC, Lim J, Lee C, Lim HS, Lee J, Lee SH (2009) Polymer solar cells based on inkjet-printed PEDOT: PSS layer. Org Electron 10:536–542. https://doi.org/10.1016/j.orgel.2009.01.015

    CAS  Article  Google Scholar 

  14. 14.

    Aradilla D, Azambuja D, Estrany F, Casas MT, Ferreira CA, Alemán C (2012) Hybrid polythiophene–clay exfoliated nanocomposites for ultracapacitor devices. J Mater Chem 22:13110–13122. https://doi.org/10.1039/C2JM31372C

    CAS  Article  Google Scholar 

  15. 15.

    Aradilla D, Estrany F, Armelin E, Alemán C (2012) Ultraporous poly(3,4-ethylenedioxythiophene) for nanometric electrochemical supercapacitor. Thin Solid Films 520:4402–4409. https://doi.org/10.1016/j.tsf.2012.02.058

    CAS  Article  Google Scholar 

  16. 16.

    Pérez-Madrigal MM, Estrany F, Armelin E, Díaz DD, Alemán C (2016) Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels. J Mater Chem A 4:1792–1805. https://doi.org/10.1039/C5TA08680A

    CAS  Article  Google Scholar 

  17. 17.

    Allard S, Forster M, Souharce B, Thiem H, Scherf U (2008) Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew Chem Int Ed 47:4070–4098. https://doi.org/10.1002/anie.200701920

    CAS  Article  Google Scholar 

  18. 18.

    Sakamoto S, Okumura M, Zhao Z, Furukawa Y (2005) Raman spectral changes of PEDOT-PSS in polymer light-emitting diodes upon operation. Chem Phys Lett 412:395–398. https://doi.org/10.1016/j.cplett.2005.07.040

    CAS  Article  Google Scholar 

  19. 19.

    Li ZL, Yang SC, Meng HF, Chen YS, Yang YZ, Liu CH, Horng SF, Hsu CS, Chen LC, Hu JP, Lee RH (2004) Patterning-free integration of polymer light-emitting diode and polymer transistor. Appl Phys Lett 84:3558. https://doi.org/10.1063/1.1728301

    CAS  Article  Google Scholar 

  20. 20.

    Fabregat G, Armelin E, Alemán C (2014) Selective detection of dopamine combining multilayers of conducting polymers with gold nanoparticles. J. Phys Chem B 118:4669–4682. https://doi.org/10.1021/jp412613g

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Fabregat G, Casanovas J, Redondo E, Armelin E, Alemán C (2014) A rational design for the selective detection of dopamine using conducting polymers. Phys Chem Chem Phys 16:7850–7861. https://doi.org/10.1039/C4CP00234B

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Horii T, Shinnai T, Tsuchiya K, Mori T, Kijima M (2012) Synthesis and properties of conjugated copolycondensates consisting of carbazole-2,7-diyl and fluorene-2,7-diyl. J Polym Sci, Part A: Polym Chem 50:4557–4562. https://doi.org/10.1002/pola.26268

    CAS  Article  Google Scholar 

  23. 23.

    Guzel M, Soganci T, Ayranci R, Ak M (2016) Smart windows application of carbazole and triazine based star shaped architecture. Phys Chem Chem Phys 18:21659–21667. https://doi.org/10.1039/C6CP02611G

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Guzel M, Soganci T, Karatas E, Ak M (2018) Donor-acceptor type super-structural triazine cored conducting polymer containing carbazole and quinoline for high-contrast electrochromic device. J Electrochem Soc 165:316–323. https://doi.org/10.1149/2.1201805jes

    CAS  Article  Google Scholar 

  25. 25.

    Reig M, Puigdollers J, Velasco D (2018) Solid-state organization of n-type carbazole-based semiconductors for organic thin-film transistors. Phys Chem Chem Phys 20:1142–1149. https://doi.org/10.1039/C7CP05135B

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Ma XC, Niu HJ, Wen HL, Wang SH, Lian YF, Jiang XK, Wang C, Bai XD, Wang W (2015) Synthesis, electrochromic, halochromic and electro-optical properties of polyazomethines with a carbazole core and triarylamine units serving as functional groups. J Mater Chem C 3:3482–3493. https://doi.org/10.1039/C4TC02400A

    CAS  Article  Google Scholar 

  27. 27.

    Liu Y, Chao DM, Yao HY (2014) New triphenylamine-based poly(amine-imide)s with carbazole-substituents for electrochromic applications. Org Electron 15:1422–1431. https://doi.org/10.1016/j.orgel.2014.04.015

    CAS  Article  Google Scholar 

  28. 28.

    O’Brien RN, Santhanam KSV (1993) Electrodeposition of zinc on a carbon cathode followed by laser interferometry: evaluation of the growth of the cathodic boundary layer. J Electroanal Chem 352:167–180. https://doi.org/10.1016/0022-0728(93)80262-G

    Article  Google Scholar 

  29. 29.

    Dubois JE, Desbene-Monvarney AN, Lacaze PC (1982) Polaromicrotribometric and IR, ESCA, electron-paramagnetic-RES spectroscopic study of colored radical films formed by electrochemical oxidation of carbazoles. 2. N-vinylcarbazole. J Electroanal Chem 132:177–190. https://doi.org/10.1016/0022-0728(82)85016-X

    CAS  Article  Google Scholar 

  30. 30.

    Mengoli G, Musiani MM, Schreck B, Zecchin SJ (1988) Electrochemical synthesis and properties of polycarbazole films in protic acid-media. J Electroanal Chem 246:73–86. https://doi.org/10.1016/0022-0728(88)85052-6

    CAS  Article  Google Scholar 

  31. 31.

    Sadki S, Chevrot C (2003) Electropolymerization of 3,4-ethylenedioxythiophene, N-ethylcarbazole and their mixtures in aqueous micellar solution. Electrochim Acta 48:733–739. https://doi.org/10.1016/S0013-4686(02)00742-9

    CAS  Article  Google Scholar 

  32. 32.

    Li W, Michinobu T (2016) Structural effects of dibromocarbazoles on direct arylation polycondensation with 3,4-ethylenedioxythiophene. Polym Chem 7:3165–3171. https://doi.org/10.1039/C6PY00381H

    CAS  Article  Google Scholar 

  33. 33.

    Wang K, Zhang T, Hu Y, Yang W, Shi Y (2014) Synthesis and characterization of a novel multicolored electrochromic polymer based on a vinylene-linked EDOT-carbazole monomer. Electrochim Acta 130:46–51. https://doi.org/10.1016/j.electacta.2014.02.153

    CAS  Article  Google Scholar 

  34. 34.

    Hu B, Zhang X, Liu J, Chen X, Zhao J, Jin L (2017) Effects of the redox group of carbazole-EDOT derivatives on their electrochemical and spectroelectrochemical properties. Synth Met 228:70–78. https://doi.org/10.1016/j.synthmet.2017.04.011

    CAS  Article  Google Scholar 

  35. 35.

    Gaupp CL, Reynolds JR (2003) Multichromic copolymers based on 3,6-bis(2-(3,4-ethylenedioxythiophene))-N-alkylcarbazole derivatives. Macromolecules 36:6305–6315. https://doi.org/10.1021/ma034493e

    CAS  Article  Google Scholar 

  36. 36.

    Data P, Zassowski P, Lapkowski M, Domagala W, Krompiec S, Flak T, Penkala M, Swist A, Soloducho J, Danikiewicz W (2014) Electrochemical and spectroelectrochemical comparison of alternated monomers and their copolymers based on carbazole and thiophene derivatives. Electrochim Acta 122:118–129. https://doi.org/10.1016/j.electacta.2013.11.167

    CAS  Article  Google Scholar 

  37. 37.

    Hu B, Luo W, Jin L, Liu ZC, Wang MN, Zhou LY, Li CY (2016) Electrochemical and spectroelectrochemical properties of poly(carbazole-EDOT)s derivatives functionalized with benzonitrile and phthalonitrile units. ECS J Solid SC 5:P21–P26. https://doi.org/10.1149/2.0091602jss

    CAS  Article  Google Scholar 

  38. 38.

    Sotzing GA, Reddinger JL, Katritzky AR, Soloducho J, Musgrave R, Reynolds JR, Steel PJ (1997) Multiply colored electrochromic carbazole-based polymers. Chem Mater 9:1578–1587. https://doi.org/10.1021/cm960630t

    CAS  Article  Google Scholar 

  39. 39.

    Kawabata K, Goto H (2010) Electrosynthesis of 2,7-linked polycarbazole derivatives to realize low-bandgap electroactive polymers. Synth Met 160:2290–2298. https://doi.org/10.1016/j.synthmet.2010.08.023

    CAS  Article  Google Scholar 

  40. 40.

    Cansu-Ergun EG, Onal AM (2018) Carbazole based electrochromic polymers bearing ethylenedioxy and propylenedioxy scaffolds. J Electroanal Chem 815:158–165. https://doi.org/10.1016/j.jelechem.2018.03.014

    CAS  Article  Google Scholar 

  41. 41.

    Boudreault P-LT, Beaupré S, Leclerc M (2010) Polycarbazoles for plastic electronics. Polym Chem 1:127–136. https://doi.org/10.1039/B9PY00236G

    CAS  Article  Google Scholar 

  42. 42.

    Aristizabal JA, Soto JP, Ballesteros L, Muñoz E, Ahumada JC (2013) Synthesis, electropolymerization, and photoelectrochemical characterization of 2,7-di(thiophen-2-yl)-N-methylcarbazole. Polym Bull 70:35–46. https://doi.org/10.1007/s00289-012-0817-8

    CAS  Article  Google Scholar 

  43. 43.

    Turbiez M, Frère P, Blanchard P, Roncali J (2000) Mixed π-conjugated oligomers of thiophene and 3,4-ethylenedioxythiophene (EDOT). Tetrahedron Lett 41:5521–5525. https://doi.org/10.1016/S0040-4039(00)00888-1

    CAS  Article  Google Scholar 

  44. 44.

    Aradilla D, Estrany F, Armelin E, Aleman C (2012) Ultraporous poly(3,4-ethylenedioxythiophene) for nanometric electrochemical supercapacitor. Thin Solid Films 520:4402–4409. https://doi.org/10.1016/j.tsf.2012.02.058

    CAS  Article  Google Scholar 

  45. 45.

    Ocampo C, Oliver R, Armelin E, Alemán C, Estrany F (2006) Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) on steel electrodes: properties and characterization. J Polym Res 13:193–200. https://doi.org/10.1007/s10965-005-9025-7

    CAS  Article  Google Scholar 

  46. 46.

    Aradilla D, Pérez-Madrigal MM, Estrany F, Azambuja D, Iribarren JI, Alemán C (2013) Nanometric ultracapacitors fabricated using multilayer of conducting polymers on self-assembled octanethiol monolayers. Org Electron 14:1483–1495. https://doi.org/10.1016/j.orgel.2013.03.010

    CAS  Article  Google Scholar 

  47. 47.

    Aradilla D, Estrany F, Alemán C (2013) Synergy of the I/I3− redox pair in the capacitive properties of nanometric poly(3,4-ethylenedioxythiophene). Org Electron 14:131–142. https://doi.org/10.1016/j.orgel.2012.10.026

    CAS  Article  Google Scholar 

  48. 48.

    Ma X, Zhu D, Mo D, Hou J, Xu J, Zhou W (2015) The fabrication of multilayers of conducting polymers and its high capacitance performance electrode for supercapacitor. Int J Electrochem Sci 10:7941–7954

    CAS  Google Scholar 

Download references


Authors acknowledge MINECO/FEDER (MAT2015-69367-R), Agència de Gestió d’Ajuts Universitaris i de Recerca (2017SGR359), Pontificia Universidad Católica de Valparaíso (DII Grant No. 37.0/2017), CONICYT-FONDEQUIP program NMR 300 (Grant No. EQM 130154) and ECOS-CONICYT (Grant No. C14E05) for financial support. C.E. is grateful to CONICYT for her predoctoral contract (N° 21140976) and funding for the research stay at UPC from the Pontificia Universidad Católica de Valparaiso (Chile). Support for the research of C.A. was received through the prize “ICREA Academia” for excellence in research funded by the Generalitat de Catalunya.

Author information



Corresponding authors

Correspondence to Francesc Estrany or Juan P. Soto or Carlos Alemán.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Escalona, C., Estrany, F., Ahumada, J.C. et al. 2,7-Linked N-methylcarbazole copolymers by combining the macromonomer approach and the oxidative electrochemical polymerization. Polym. Bull. 77, 1233–1253 (2020). https://doi.org/10.1007/s00289-019-02799-8

Download citation


  • Polymer synthesis
  • Molecular engineering
  • Conducting polymer
  • Polycarbazole
  • Poly(3,4-ethylenedioxythiophene)
  • Potentiodynamic sweep