Advertisement

Impact of surface-modified molybdenum disulphide on crystallization, thermal and mechanical properties of polyvinylidene fluoride

  • M. S. Gopika
  • B. BindhuEmail author
  • K. Y. Sandhya
  • V. L. Reena
Original Paper
  • 33 Downloads

Abstract

Polymer nanocomposite based on layered structure such as graphene, MoS2, MoO3 and WS2 has become an active field of research due to their exceptional thermal, mechanical and electrical properties. Achieving uniform dispersion of layered nanostructures within the polymer matrix is challenging because of the agglomeration of nanostructures which occurs due to the Van der Waals attraction and the cohesive nature between the two phases. In this work, we report the preparation of PVDF-modified MoS2 nanocomposites by the solvent blending method. The XRD results reveal the interaction of the negatively charged surface of MoS2 sheets and the positive CH2 group of PVDF through the predomination of β-phase. Morphological observation through SEM suggests the MoS2 induced formation of nanofibres in the composite. Enhancement in the thermal stability of the nanocomposite is observed and is possibly due to the heat barrier by the exfoliated MoS2 which in turn supports the tortuous effect. The DSC of the PVDF-modified MoS2 composite indicates the domination of β-phase and the hindrance to crystallization of PVDF. Improvement in the mechanical strength of the composites was also noticed on higher filler concentration.

Keywords

PVDF MoS2 β-Phase Surface modification Exfoliation 

Notes

Acknowledgements

The authors acknowledge Centre for Biopolymer Science and Technology, Kochi, for extending the processing facility.

References

  1. 1.
    Zhou K, Liu J, Wen P, Hu Y, Gui Z (2014) A noncovalent functionalization approach to improve the dispersibility and properties of polymer/MoS composites. Appl Surf Sci 316:237–244.  https://doi.org/10.1016/j.apsusc.2014.07.136 CrossRefGoogle Scholar
  2. 2.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205.  https://doi.org/10.1021/ma060733p CrossRefGoogle Scholar
  3. 3.
    Kim H, Abdala AA, MacOsko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530.  https://doi.org/10.1021/ma100572e CrossRefGoogle Scholar
  4. 4.
    Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33:1119–1198.  https://doi.org/10.1016/j.progpolymsci.2008.07.008 CrossRefGoogle Scholar
  5. 5.
    Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:314–358.  https://doi.org/10.1557/mrs2007.229 CrossRefGoogle Scholar
  6. 6.
    Naffakh M, Díez-Pascual AM, Remškar M, Marco C (2012) New inorganic nanotube polymer nanocomposites: improved thermal, mechanical and tribological properties in isotactic polypropylene incorporating INT-MoS. J Mater Chem 22:17002.  https://doi.org/10.1039/c2jm33422d CrossRefGoogle Scholar
  7. 7.
    Ma L, Huang G, Chen W, Wang Z, Ye J, Li H, Chen D, Lee JYL (2014) Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: microstructure and electrochemical lithium storage. J Power Sources 264:262–271.  https://doi.org/10.1016/j.jpowsour.2014.04.084 CrossRefGoogle Scholar
  8. 8.
    Sham ML, Kim JK (2006) Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments. Carbon N Y 44:768–777.  https://doi.org/10.1016/j.carbon.2005.09.013 CrossRefGoogle Scholar
  9. 9.
    Qu L, Lin Y, Hill DE, Zhou B, Wang W, Sun X, Kitaygorodskiy A, Suarez M, Connell JW, Allard LF, Sun YP (2004) Polyimide-functionalized carbon nanotubes: synthesis and dispersion in nanocomposite films. Macromolecules 37:6055–6060.  https://doi.org/10.1021/ma0491006 CrossRefGoogle Scholar
  10. 10.
    Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim H-Y, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(80):568–571.  https://doi.org/10.1126/science.1194975 CrossRefGoogle Scholar
  11. 11.
    Afanasiev P, Xia G-F, Berhault G, Jouguet B, Lacroix M (1999) Surfactant-assisted synthesis of highly dispersed molybdenum sulfide. Chem Mater 11:3216–3219.  https://doi.org/10.1021/cm991062v CrossRefGoogle Scholar
  12. 12.
    Lozano K, Barrera EV (2001) Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. J Appl Polym Sci 79:125–133.  https://doi.org/10.1002/1097-4628(20010103)79:1%3c125:AID-APP150%3e3.0.CO;2-D CrossRefGoogle Scholar
  13. 13.
    Matusinovic Z, Shukla R, Manias E, Hogshead CG, Wilkie C (2012) Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/molybdenum disulfide nanocomposites with enhanced thermal stability. Polym Degrad Stab 97:2481–2486.  https://doi.org/10.1016/j.polymdegradstab.2012.07.004 CrossRefGoogle Scholar
  14. 14.
    Remskar M, Jelenc J, Visic B, Varlec A, Cesarek M, Krzan A (2013) Friction properties of polyvinylidene fluoride with added MoS nanotubes. Phys Status Solidi Appl Mater Sci 210:2314–2319.  https://doi.org/10.1002/pssa.201329325 CrossRefGoogle Scholar
  15. 15.
    Jia Q, Huang X, Wang G, Diao J, Jiang PJ (2016) MoS nanosheet superstructures based polymer composites for high-dielectric and electrical energy storage applications. J Phys Chem C 120:10206–10214.  https://doi.org/10.1021/acs.jpcc.6b02968 CrossRefGoogle Scholar
  16. 16.
    Naffakh M, Marco C, Gómez MA, Jiménez I (2008) Unique isothermal crystallization behavior of novel polyphenylene sulfide/inorganic fullerene-like WS nanocomposites. J Phys Chem B 112:14819–14828.  https://doi.org/10.1021/jp8063245 CrossRefGoogle Scholar
  17. 17.
    Bindhu B, Sharu BK, Gopika MS, Praseetha PK, Veluraja K (2016) Molybdenum disulfide nanoflakes through Li-AHA assisted exfoliation in an aqueous medium. RSC Adv 6:22026–22033.  https://doi.org/10.1039/C5RA25368C CrossRefGoogle Scholar
  18. 18.
    Song I, Park C, Choi HC (2015) Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Adv 5:7495–7514.  https://doi.org/10.1039/c4ra11852a CrossRefGoogle Scholar
  19. 19.
    Wang S, An C, Yuan J (2010) Synthetic fabrication of nanoscale MoS -based transition metal sulfides. Materials (Basel) 3:401–433.  https://doi.org/10.3390/ma3010401 CrossRefGoogle Scholar
  20. 20.
    Zhou K, Jiang S, Bao C, Song L, Wang B, Tang G, Hu Y, Gui Z (2012) Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS ): structural characteristics and markedly enhanced properties. RSC Adv 2:11695–11703.  https://doi.org/10.1039/c2ra21719h CrossRefGoogle Scholar
  21. 21.
    Liu KK, Zhang W, Lee YH, Lin YC, Chang MT, Su CY, Chang CS, Li H, Shi Y, Zhang H, Lai CS, Li LJ (2012) Growth of large-area and highly crystalline MoS thin layers on insulating substrates. Nano Lett 12:1538–1544.  https://doi.org/10.1021/nl2043612 CrossRefGoogle Scholar
  22. 22.
    Castellanos-Gomez A, Poot M, Steele GA, Van Der Zant HSJ, Agrait N, Rubio-Bollinger G (2012) Elastic properties of freely suspended MoS nanosheets. Adv Mater 24:772–775.  https://doi.org/10.1002/adma.201103965 CrossRefGoogle Scholar
  23. 23.
    Tang Z, Wei Q, Guo B (2014) A generic solvent exchange method to disperse MoS in organic solvents to ease the solution process. Chem Commun 50:3934.  https://doi.org/10.1039/c4cc00425f CrossRefGoogle Scholar
  24. 24.
    Zhou K, Zhang Q, Liu J, Wang B, Jiang S, Shi Y, Hu Y, Gui Z (2014) Synergetic effect of ferrocene and MoS in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties. RSC Adv 4:13205.  https://doi.org/10.1039/c3ra46334f CrossRefGoogle Scholar
  25. 25.
    Zhou K, Yang W, Tang G, Wang B, Jiang S, Hu Y, Gui Z (2013) Comparative study on the thermal stability, flame retardancy and smoke suppression properties of polystyrene composites containing molybdenum disulfide and graphene. RSC Adv 3:25030.  https://doi.org/10.1039/c3ra43297a CrossRefGoogle Scholar
  26. 26.
    McLauchlin AR, Thomas NL (2009) Preparation and thermal characterisation of poly(lactic acid) nanocomposites prepared from organoclays based on an amphoteric surfactant. Polym Degrad Stab 94:868–872.  https://doi.org/10.1016/j.polymdegradstab.2009.01.012 CrossRefGoogle Scholar
  27. 27.
    Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon N Y 48:3834–3839.  https://doi.org/10.1016/j.carbon.2010.06.048 CrossRefGoogle Scholar
  28. 28.
    Zhou K, Liu J, Wang B, Zhang Q, Shi Y, Jiang S, Hu Y, Gui Z (2014) Facile preparation of poly(methyl methacrylate)/MoS2 nanocomposites via in situ emulsion polymerization. Mater Lett 126:159–161.  https://doi.org/10.1016/j.matlet.2014.04.040 CrossRefGoogle Scholar
  29. 29.
    Benavente E, Santa Ana MA, Mendizábal F, González G (2002) Intercalation chemistry of molybdenum disulfide. Coord Chem Rev 224:87–109.  https://doi.org/10.1016/S0010-8545(01)00392-7 CrossRefGoogle Scholar
  30. 30.
    Afanasiev P (2008) Synthetic approaches to the molybdenum sulfide materials. Comptes Rendus Chim 11:159–182.  https://doi.org/10.1016/j.crci.2007.04.009 CrossRefGoogle Scholar
  31. 31.
    Leon V, Parret R, Almairac R, Alvarez L, Doyle Babaa M R (2012) Spectroscopic study of double-walled carbon nanotube functionalization for preparation of carbon nanotube/epoxy composites. Carbon N Y 50:4987–4994.  https://doi.org/10.1016/j.carbon.2012.06.007 CrossRefGoogle Scholar
  32. 32.
    Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340:1226419.  https://doi.org/10.1126/science.1226419 CrossRefGoogle Scholar
  33. 33.
    Jagtap SB, Kushwaha RK, Ratna D (2013) Poly(ethylene oxide)-multiwall carbon nanotube composites: effect of dicarboxylic acid salt-based modifiers. J Appl Polym Sci 127:5028–5036.  https://doi.org/10.1002/app.38112 CrossRefGoogle Scholar
  34. 34.
    Ratna D, Jagtap SB, Rathor Ritu, Kushwaha RK, Shimpi N, Mishra SN (2008) A comparative studies on dispersion of multiwall carbon nanotubes in Poly(ethylene oxide) matrix using dicarboxylic acid and amino acid based modifiers. Polym Polym Compos 16:101–113. https://doi.org/10.1002/pcGoogle Scholar
  35. 35.
    Tjong SC, Li YC, Li RKY (2010) Frequency and temperature dependences of dielectric dispersion and electrical properties of polyvinylidene fluoride/expanded graphite composites. J Nanomater.  https://doi.org/10.1155/2010/261748 Google Scholar
  36. 36.
    Prabhakaran T, Hemalatha J (2013) Ferroelectric and magnetic studies on unpoled Poly (vinylidine Fluoride)/Fe3O4 magnetoelectric nanocomposite structures. Mater Chem Phys 137:781–787.  https://doi.org/10.1016/j.matchemphys.2012.09.064 CrossRefGoogle Scholar
  37. 37.
    Ezquerra TA, Canalda JC, Sanz A, Linares A (2014) On the electrical conductivity of PVDF composites with different carbon-based nanoadditives. Colloid Polym Sci 292:1989–1998.  https://doi.org/10.1007/s00396-014-3252-6 CrossRefGoogle Scholar
  38. 38.
    Jaleh B, Jabbari A (2014) Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl Surf Sci 320:339–347.  https://doi.org/10.1016/j.matchemphys.2012.09.064 CrossRefGoogle Scholar
  39. 39.
    Zhang Y, Zhao J, Chu H, Zhou X, Wei Y (2014) Effect of modified attapulgite addition on the performance of a PVDF ultrafiltration membrane. Desalination 344:71–78.  https://doi.org/10.1016/j.desal.2014.03.007 CrossRefGoogle Scholar
  40. 40.
    Martins P, Costa CM, Benelmekki M, Botelho G, Lanceros-Mendez S (2012) On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. Cryst Eng Comm 14:2807.  https://doi.org/10.1039/c2ce06654h CrossRefGoogle Scholar
  41. 41.
    Zhang Y, Jiang S, Fan M, Zeng Y, Yu Y, He J (2013) Piezoelectric formation mechanisms and phase transformation of poly(vinylidene fluoride)/graphite nanosheets nanocomposites. J Mater Sci Mater Electron 24:927–932.  https://doi.org/10.1007/s10854-012-0851-1 CrossRefGoogle Scholar
  42. 42.
    Tang G, Wang Y, Chen W, Tang H, Li C (2013) Hydrothermal synthesis and characterization of novel flowerlike MoS2 hollow microspheres. Mater Lett 100:15–18.  https://doi.org/10.1016/j.matlet.2013.02.103 CrossRefGoogle Scholar
  43. 43.
    Remškar M, Iskra I, Jelenc J, Škapin SD, Višić B, Varlec A, Kržan A (2013) A novel structure of polyvinylidene fluoride (PVDF) stabilized by MoS2 nanotubes. Soft Matter 9:8647.  https://doi.org/10.1039/c3sm51279g CrossRefGoogle Scholar
  44. 44.
    Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867.  https://doi.org/10.1016/j.progpolymsci.2010.03.002 CrossRefGoogle Scholar
  45. 45.
    Bodkhe S, Rajesh PSM, Kamle S, Verma V (2014) Beta-phase enhancement in polyvinylidene fluoride through filler addition: comparing cellulose with carbon nanotubes and clay. J Polym Res 21:434.  https://doi.org/10.1007/s10965-014-0434-3 CrossRefGoogle Scholar
  46. 46.
    Liu W, Yang X, Zhang Y, Xu M, Chen H (2014) Ultra-stable two-dimensional MoS2 solution for highly efficient organic solar cells. RSC Adv 4:32744–32748.  https://doi.org/10.1039/C4RA04116J CrossRefGoogle Scholar
  47. 47.
    Vladea RV, Alhassan SM, Papavassiliou G (2013) In situ deposition and characterization of MoS2 nanolayers on carbon nanofibers and nanotubes. J Phys Chem C 117:10135–10142.  https://doi.org/10.1021/jp400498x CrossRefGoogle Scholar
  48. 48.
    Ma G, Peng H, Mu J, Huang H, Zhou X, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78.  https://doi.org/10.1016/j.jpowsour.2012.11.088 CrossRefGoogle Scholar
  49. 49.
    Pham VH, Kim KH, Jung DW, Singh K, Oh ES, Chung JS (2013) Liquid phase co-exfoliated MoS2 -graphene composites as anode materials for lithium ion batteries. J Power Sources 244:280–286.  https://doi.org/10.1016/j.jpowsour.2013.01.053 CrossRefGoogle Scholar
  50. 50.
    Gonçalves G, Marques PAAP, Barros-Timmons A, Bdkin I, Singh MK, Emami N, Grácio J (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927.  https://doi.org/10.1039/c0jm01674h CrossRefGoogle Scholar
  51. 51.
    Mohamadi S, Sharifi-Sanjani N, Foyouhi A (2013) Evaluation of graphene nanosheets influence on the physical properties of PVDF/PMMA blend. J Polym Res 20:46.  https://doi.org/10.1007/s10965-012-0046-8 CrossRefGoogle Scholar
  52. 52.
    Jinhong Yu, Huang Xingyi, Chao Wu, Jiang Pingkai (2011) Permittivity, thermal conductivity and thermal stability of poly(vinylidene fluoride)/graphene nanocomposites. IEEE Trans Dielectr Electr Insul 18:478–484.  https://doi.org/10.1109/TDEI.2011.5739452 CrossRefGoogle Scholar
  53. 53.
    Kim IH, Baik DH, Jeong YG (2012) Structures, electrical, and dielectric properties of PVDF-based nanocomposite films reinforced with neat multi-walled carbon nanotube. Macromol Res 20:920–927.  https://doi.org/10.1007/s13233-012-0064-8 CrossRefGoogle Scholar
  54. 54.
    Li L, Li CY, Ni C, Rong L, Hsiao B (2007) Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer (Guildf) 48:3452–3460.  https://doi.org/10.1016/j.polymer.2007.04.030 CrossRefGoogle Scholar
  55. 55.
    Huang L, Lu C, Wang F, Wang L (2014) Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. RSC Adv 4:45220–45229.  https://doi.org/10.1039/C4RA07379G CrossRefGoogle Scholar
  56. 56.
    Schneider S, Drujon X, Wittmann JC, Lotz B (2001) Impact of nucleating agents of PVDF on the crystallization of PVDF/PMMA blends. Polymer (Guildf) 42:8799–8806.  https://doi.org/10.1016/S0032-3861(01)00349-4 CrossRefGoogle Scholar
  57. 57.
    Wang YJ, Kim D (2007) Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes. Electrochim Acta 52:3181–3189.  https://doi.org/10.1016/j.electacta.2006.09.070 CrossRefGoogle Scholar
  58. 58.
    Carabineiro SAC, Pereira MFR, Nunes-Pereira J, Silva J, Caparros C, Sencadas V, Lanceros-Mendez S (2012) The effect of nanotube surface oxidation on the electrical properties of multiwall carbon nanotube/poly(vinylidene fluoride) composites. J Mater Sci 47:8103–8111.  https://doi.org/10.1007/s10853-012-6705-7 CrossRefGoogle Scholar
  59. 59.
    Bhatt AS, Bhat DK (2012) Influence of nanoscale NiO on magnetic and electrochemical behavior of PVDF-based polymer nanocomposites. Polym Bull 68:253–261.  https://doi.org/10.1007/s00289-011-0628-3 CrossRefGoogle Scholar
  60. 60.
    Costa P, Silva J, Sencadas V, Costa CM, van Hattum FWJ, Rocha JG, Lanceros-Mendez S (2009) The effect of fibre concentration on the α to β-phase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly(vinylidene fluoride) composites. Carbon N Y 47:2590–2599.  https://doi.org/10.1016/j.carbon.2009.05.011 CrossRefGoogle Scholar
  61. 61.
    Priya L, Jog J (2003) Polymorphism in intercalated poly (vinylidene fluoride)/clay nanocomposites. J Appl Polym Sci 89:2036–2040.  https://doi.org/10.1002/polb.10355 CrossRefGoogle Scholar
  62. 62.
    Sun LL, Li B, Zhang ZG, Zhong WH (2010) Achieving very high fraction of β-crystal PVDF and PVDF/CNF composites and their effect on AC conductivity and microstructure through a stretching process. Eur Polym J 46:2112–2119.  https://doi.org/10.1016/j.eurpolymj.2010.09.003 CrossRefGoogle Scholar
  63. 63.
    Wang GS, Wei ZY, Sang L, Chen GY, Zhang WX, Dong XF, Qi M (2013) Morphology, crystallization and mechanical properties of poly(ε-caprolactone)/graphene oxide nanocomposites. Chinese J Polym Sci (English Ed) 31:1148–1160.  https://doi.org/10.1007/s10118-013-1278-8 CrossRefGoogle Scholar
  64. 64.
    Raja M, Ryu SH, Shanmugharaj AM (2014) Influence of surface modified multiwalled carbon nanotubes on the mechanical and electroactive shape memory properties of polyurethane (PU)/poly(vinylidene diflouride) (PVDF) composites. Colloids Surfaces A Physicochem Eng Asp 450:59–66.  https://doi.org/10.1016/j.colsurfa.2014.03.008 CrossRefGoogle Scholar
  65. 65.
    Inceoglu F, Ville J, Ghamri N, Pradel JL, Durin A, Valette R, Vergnes B (2011) Correlation between processing conditions and fiber breakage during compounding of glass fiber-reinforced polyamide. Polym Compos 32:1842–1850.  https://doi.org/10.1002/pc.21217 CrossRefGoogle Scholar
  66. 66.
    Chou SC, Cheng YY (2012) Comparison of polyimide composites with non-covalent modified and acid modified multi-wall carbon nanotube. Polym Polym Compos 20:353–358Google Scholar
  67. 67.
    Xu Q, Gong Y, Fang Y, Jiang G, Wang Y, Sun X, Wang R (2012) Straightforward synthesis of hyperbranched polymer/grapheme nanocomposites from graphite oxide via in situ grafting from approach. Bull Mater Sci 35:795–800.  https://doi.org/10.1007/s12034-012-0378-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNoorul Islam Centre for Higher EducationKumaracoilIndia
  2. 2.Department of ChemistryIndian Institute of Space Science and TechnologyThiruvananthapuramIndia
  3. 3.Siddha Central Research InstituteCentral Council for Research in SiddhaChennaiIndia

Personalised recommendations