Skip to main content
Log in

Graphene impact of the LDPE characteristics

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Graphene addition to low-density polyethylene prolonged oxygen penetration in low-density polyethylene (LDPE), deferred embrittlement effect of polymeric compound, developed storage modulus, electrical conductivity and enhanced viscosity of LDPE nanocompounds. The presence of graphenes inhibited movement of polymer chains, which affected increasing toughness and capability of LDPE compounds. Continuity of carbon–carbon connection threshold of graphene compound took place with about 0.5 wt% graphene inclusion in LDPE structure. The impenetrability of oxygen over the surface of LDPE compounds achieved with 0.5 wt% graphene inclusion, which made severe perfections and decreased 37% fuel penetration if it is compared to pristine LDPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lia Z, Gonzáleza AJ, Heeralala VB, Wang DY (2018) Covalent assembly of MCM-41 nanospheres on graphene oxide for improving fire retardancy and mechanical property of epoxy resin. Compos B 138:101–112

    Google Scholar 

  2. Papageorgiou DG, Terzopoulou Z, Fina A, George FC, Papageorgiou Z, Bikiaris DK, Chrissafis K, Young RJ, Kinloch IA (2018) Enhanced thermal and fire retardancy properties of polypropylene reinforced with a hybrid graphene/glass-fibre filler. Compos Sci Technol 156:95–102

    CAS  Google Scholar 

  3. Sabet M, Soleimani H (2017) The impact of electron beam irradiation on low density polyethylene and ethylene vinyl acetate. IOP Conf Ser Mater Sci Eng 204(1):012005

    Google Scholar 

  4. Xu W, Liang B, Xiaoling Z, Guisong W, Ding WD (2018) The flame retardancy and smoke suppression effect of a hybrid containing CuMoO4 modified reduced graphene oxide/layered double hydroxide on epoxy resin. J Hazard Mater 343:364–375

    CAS  PubMed  Google Scholar 

  5. Sabet M, Soleimani H (2018) Broad studies of graphene and low-density polyethylene composites. J Elastom Plast. https://doi.org/10.1177/0095244318802608

    Article  Google Scholar 

  6. Feng Y, He CH, Wen Y, Ye Y, Zhou X, Xie X, Mai YW (2018) Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. J Hazard Mater 346:140–151

    CAS  PubMed  Google Scholar 

  7. Yuan B, Fan A, Yang M, Chen X, Hu Y, Bao C, Jiang S, Niu Y, Zhang Y, He S, Dai H (2017) The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym Degrad Stab 143:42–56

    CAS  Google Scholar 

  8. Sabet M, Soleimani H, Hassan A, Ratnam CT (2014) Electron beam irradiation of LDPE filled with calcium carbonate and metal hydroxides. Polym Plast Technol Eng 53(13):1362–1366

    CAS  Google Scholar 

  9. Feng Y, He C, Wen Y, Ye Y, Zhou X, Xie X, Mai YW (2017) Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements. Compos A Appl Sci Manuf 103:74–83

    CAS  Google Scholar 

  10. Sabet M, Hassan A, Ratnam CT (2015/2013) Properties of ethylene–vinyl acetate filled with metal hydroxide. J Elastom Plast 47:1 88–100

    Google Scholar 

  11. Xu W, Zhang B, Xu B, Li A (2016) The flame retardancy and smoke suppression effect of heptaheptamolybdate modified reduced graphene oxide/layered double hydroxide hybrids on polyurethane elastomer. Compos A Appl Sci Manuf 91:30–40

    CAS  Google Scholar 

  12. Huang G, Wang S, Song P, Wu C, Chen S, Wang X (2014) Combination effect of tubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos A Appl Sci Manuf 59:18–25

    CAS  Google Scholar 

  13. Sabet M, Syafiq M (2013) Calcium stearate and alumina trihydrate addition of irradiated LDPE, EVA and blends with electron beam. Appl Mech Mater 290:31–37

    Google Scholar 

  14. Huang G, Chen S, Song P, Lu P, Wu C, Liang H (2014) Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly (methyl methacrylate) nanocomposites. Appl Clay Sci 88–89:78–85

    Google Scholar 

  15. Liu S, Yan H, Fang Z, Wang H (2014) Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos Sci Technol 90:40–47

    CAS  Google Scholar 

  16. Sabet M, Savory RM, Hassan A, Chantara TR (2013) The effect of TMPTMA addition on electron-beam irradiated LDPE, EVA and blend properties. Int Polym Proc 28(4):386–392

    CAS  Google Scholar 

  17. Li KY, Kuan CF, Kuan HC, Chen CH, Shen MY, Yang JM, Chiang CL (2014) Preparation and properties of novel epoxy/graphene oxide nanosheets (GON) composites functionalized with flame retardant containing phosphorus and silicon. Mater Chem Phys 146(3):354–362

    CAS  Google Scholar 

  18. Wang Z, Wei P, Qian Y, Liu J (2014) The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos B Eng 60:341–349

    Google Scholar 

  19. Soleimani H, Yahya N, Baig MK, Khodapanah L, Sabet M, Burda M, Oechsner A, Awang M (2015) Synthesis of carbon nanotubes for oil-water interfacial tension reduction. Oil Gas Res 1(1):1000104

    Google Scholar 

  20. Hong N, Song L, Wang B, Stec AA, Hull TR, Zhan J, Hu Y (2014) Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly(methyl methacrylate). Mater Res Bull 49:657–664

    CAS  Google Scholar 

  21. Soleimani H, Latiff NRA, Yahya N, Sabet M, Khodapanah L, Kozlowski G, Chuan LK, Guan BH (2016) Synthesis and characterization of yttrium iron garnet (YIG) nanoparticles activated by electromagnetic wave in enhanced oil recovery. J Nano Res 38:40–46

    CAS  Google Scholar 

  22. Sabet M, Hassan A, Ratnam CT (2013) Electron-beam irradiation of low density polyethylene/ethylene vinyl acetate blends. J Polym Eng 33:149–161

    CAS  Google Scholar 

  23. Dittrich B, Wartig KA, Hofmann D, Mülhaupt R, Schartel B (2013) Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab 98(8):1495–1505

    CAS  Google Scholar 

  24. Maziyar S, Hassan S, Hosseini S (2018) Effect of addition graphene to ethylene vinyl acetate and low-density polyethylene. J Vinyl Add Tech 24:E177–E185

    Google Scholar 

  25. Huang G, Chen S, Liang H, Wang X, Gao J (2013) Combination of graphene and montmorillonite reduces the flammability of poly(vinyl alcohol) nanocomposites. Appl Clay Sci 80–81:433–437

    Google Scholar 

  26. Maziyar S, Hassan S, Erfan M (2018) Effect of graphene and carbon nanotube on low-density polyethylene nanocomposites. J Vinyl Add Tech. https://doi.org/10.1002/vnl.21643

    Article  Google Scholar 

  27. Maziyar S, Hassan S (2018) Thermal, electrical and characterization effects of graphene on the properties of low-density polyethylene composites. Int J Plast Technol 22:234–246

    Google Scholar 

  28. Woehrl N, Ochedowski O, Gottlieb S, Shibasaki K, Schulz S (2014) Plasma-enhanced chemical vapor deposition of graphene on copper substrates. AIP Adv 4:047128

    Google Scholar 

  29. Boyd DA, Lin WH, Hsu CC, Teague ML, Chen CC, Lo YY, Chan WY, Su WB, Cheng TC, Chang CS, Wu CI, Yeh NC (2015) Single-step deposition of high-mobility graphene at reduced temperature. Nat Commun 6:6620

    CAS  PubMed  Google Scholar 

  30. Sabet M, Hassan A, Ratnam CT (2013) Effect of zinc borate on flammability/thermal properties of ethylene vinyl acetate filled with metal hydroxides. J Reinf Plast Compos 32(15):1122–1128

    Google Scholar 

  31. Kaindl R, Jakopic G, Resel R, Pichler J, Fian A, Fisslthaler E, Grogger W, Bayer BC, Fischer R, Waldhauser W (2015) Synthesis of graphene-layer nanosheet coatings by PECV. Mater Today Proc 2:4247–4255

    Google Scholar 

  32. Zhou K, Gao R (2017) The influence of a novel two dimensional graphene-like nanomaterial on thermal stability and flammability of polystyrene. J Colloid Interface Sci 500:164–171

    CAS  PubMed  Google Scholar 

  33. Sabet M, Soleimani H, Seyednooroldin H (2016) Properties and characterization of ethylene-vinyl acetate filled with carbon nanotube. Polym Bull 73:419–434

    CAS  Google Scholar 

  34. Yimin J, Yuzhou L, Guoqiang C, Tieling X (2017) Fire-resistant and highly electrically conductive silk fabrics fabricated with reduced graphene oxide via dry-coating. Mater Des 133:528–535

    Google Scholar 

  35. Zhou K, Gui Z, Hu Y, Jiang S, Tang G (2016) The influence of cobalt oxide–graphene hybrids on thermal degradation, fire hazards and mechanical properties of thermoplastic polyurethane composites. Compos A Appl Sci Manuf 88:10–18

    CAS  Google Scholar 

  36. Zhoup K, Gui Z, Hu Y (2016) The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos A Appl Sci Manuf 80:217–227

    Google Scholar 

  37. Sabet M, Soleimani H (2014) Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes. IOP Conf Ser Mater Sci Eng 64:1–8

    Google Scholar 

  38. Chen X, Ma C, Jiao C (2016) Enhancement of flame-retardant performance of thermoplastic polyurethane with the incorporation of aluminum hypophosphite and iron-graphene. Polym Degrad Stab 129:275–285

    CAS  Google Scholar 

  39. Liu S, Fang Z, Yan H, Chevali VS, Wang H (2016) Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos A Appl Sci Manuf 89:26–32

    CAS  Google Scholar 

  40. Bengin MAH (2017) Combined effects of modified polystyrene and unprocessed fly ash on concrete characteristics produced by a novel technique of densification. World Eng Appl Sci J 8(3):118–129

    Google Scholar 

  41. Srinivasan V, Francis MLK, Purushothaman T (2017) Applications of nanotechnology and nanomaterials: a literature review. World Eng Appl Sci J 8(2):111–114

    Google Scholar 

  42. Vijayasarathi P, Suresh PP, Rajaram G (2016) Experimental and investigation of nano nanocompound coated TI-C-N surfaces with ball-cratering test method. World Eng Appl Sci J 7(2):85–91

    Google Scholar 

  43. Hosseini SN, Shuker MT, Sabet M, Zamani A, Hosseini Z, Shabib AA (2015) Brine ions and mechanism of low salinity water injection in enhanced oil recovery: a review. Res J Appl Sci Eng Technol 11(11):1257–1264

    CAS  Google Scholar 

  44. Bettina D, Karen AW, Daniel H, Rolf M, Bernhard S (2013) Flame retardancy through carbon nanostuffs: carbon black, multi wall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Strength 98:1495–1505

    Google Scholar 

  45. Kuo YL, Chen FK, Hsu CK, Chia HC, Ming YS, Jia MY, Chin LC (2014) Preparation and properties of novel epoxy/graphene oxide nanosheets (GON) compounds functionalized with flame retardant containing phosphorus and silicon. Stuffs Chem Phys 146:354–362

    Google Scholar 

  46. Zhou S, Ning M, Wang X (2015) The influence of c-radiation on the mechanical, thermal decomposition, and flame retardant characteristics of EVA/LDPE/ATH blends. Therm Anal Calorim 119:167–173

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziyar Sabet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabet, M., Soleimani, H. & Hosseini, S. Graphene impact of the LDPE characteristics. Polym. Bull. 77, 459–474 (2020). https://doi.org/10.1007/s00289-019-02759-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02759-2

Keywords

Navigation