A novel double-layered polymeric nanofiber-based dressing with controlled drug delivery for pain management in burn wounds

A Correction to this article was published on 11 January 2021

This article has been updated


Localized application of drugs at specific wound area has many advantages and less side effects as compared with other drug administrative routes. Burn patients suffer from swear pain, and the major focus of medical practitioners includes pain and infection management. Advancements in material science, especially nanofibers, have gained a lot of attention in various applications such as filtration, nanocomposites, protection and medical sciences. Nanofibers (NFs) loaded with drug, applied on local wound area, can reduce the side effects as well as can provide quick action. This study dealt with the fabrication of drug-loaded NFs for better pain management with controlled drug release. Two layers of NFs were fabricated with different drugs using electrospinning. Contact layer of polyethylene oxide nanofibers was loaded with gabapentin (a nerve pain killer) for quick action followed by second layer of sodium alginate nanofibers with acetaminophen (mild pain killer) for synergizing the effect. The fabricated dressing was characterized using scanning electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis, UV–Vis spectroscopy, drug release rate and liquid absorption tests. Different drug release kinetic models were applied to the experimental data, and drug release from the first layer was best followed by first-order kinetic model, while, the second layer was best described by Hixson–Crowell kinetic model. The combination of quick release of strong nerve pain killer followed by slow release of mild pain killer could be a good tool to reduce pain scores in a more professional manner with less side effects in burn patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Change history

  • 11 January 2021

    The original version of this article inadvertently contained mistake.


  1. 1.

    Bhattacharya S (2012) Principles and practice of wound care. In: Indian Journal of Plastic Surgery. Jaypee Brothers Medical Publishers (P) Ltd., pp 167–169

  2. 2.

    Becker WK, Cioffi WG, McManus AT et al (1991) Fungal burn wound infection. A 10-year experience. Arch Surg 126:44–48

    CAS  Article  Google Scholar 

  3. 3.

    Sarabahi S, Tiwari VK, Arora S et al (2012) Changing pattern of fungal infection in burn patients. Burns 38:520–528. https://doi.org/10.1016/j.burns.2011.09.013

    Article  PubMed  Google Scholar 

  4. 4.

    Weber J, McManus A, Nursing Committee of the International Society for Burn Injuries (2004) Infection control in burn patients. Burns 30:A16–A24. https://doi.org/10.1016/j.burns.2004.08.003

    Article  PubMed  Google Scholar 

  5. 5.

    Singh R, Chacharkar MP (2011) Dried gamma-irradiated amniotic membrane as dressing in burn wound care. J Tissue Viability 20:49–54. https://doi.org/10.1016/J.JTV.2010.06.001

    Article  PubMed  Google Scholar 

  6. 6.

    Thomas J, Slone W, Linton S et al (2011) In vitro antimicrobial efficacy of a silver alginate dressing on burn wound isolates. J Wound Care 20:124–128. https://doi.org/10.12968/jowc.2011.20.3.124

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Mir M, Ali MN, Barakullah A et al (2018) Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 7:1–21. https://doi.org/10.1007/s40204-018-0083-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Tredget EE, Shankowsky HA, Groeneveld A, Burrell R (1998) A matched-pair, randomized study evaluating the efficacy and safety of acticoat silver-coated dressing for the treatment of burn wounds. J Burn Care Rehabil 19:531–537. https://doi.org/10.1097/00004630-199811000-00013

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Leaper DJ (2006) Silver dressings: their role in wound management. Int Wound J 3:282–294. https://doi.org/10.1111/j.1742-481X.2006.00265.x

    Article  PubMed  Google Scholar 

  10. 10.

    Munteanu A, Florescu IP, Nitescu C (2016) A modern method of treatment: the role of silver dressings in promoting healing and preventing pathological scarring in patients with burn wounds. J Med Life 9:306–315

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    de Castro RJA, Leal PC, Sakata RK (2013) Tratamento da dor em queimados. Rev Bras Anestesiol 63:154–158. https://doi.org/10.1590/S0034-70942013000100013

    Article  Google Scholar 

  12. 12.

    Gray P, Williams B, Cramond T (2008) Successful use of gabapentin in acute pain management following burn injury: a case series. Pain Med 9:371–376. https://doi.org/10.1111/j.1526-4637.2006.00149.x

    Article  PubMed  Google Scholar 

  13. 13.

    Lui TH, Lam CS (2012) Gabapentin for pain control in burn patients for surgical debridement: pharmacokinetic properties consideration. Arch Trauma Res 1:137–138. https://doi.org/10.5812/atr.7068

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Sheppard N (2014) Gabapentin in burns. Arch Trauma Res 3:e6471. https://doi.org/10.5812/ATR.6471

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Jirsák O, Dao TA (2009) Production, Properties and End-Uses of Nanofibres. Nanotechnology in Construction 3. Springer, Berlin, Heidelberg, pp 95–99

    Google Scholar 

  16. 16.

    Rafiq M, Hussain T, Abid S et al (2018) Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils. Mater Res Express 5:035007. https://doi.org/10.1088/2053-1591/aab0b4

    CAS  Article  Google Scholar 

  17. 17.

    Sridhar R, Venugopal JR, Sundarrajan S et al (2011) Electrospun nanofibers for pharmaceutical and medical applications. J Drug Deliv Sci Technol 21:451–468. https://doi.org/10.1016/S1773-2247(11)50075-9

    CAS  Article  Google Scholar 

  18. 18.

    Shan X, Liu C, Li F et al (2015) Nanoparticles vs. nanofibers: a comparison of two drug delivery systems on assessing drug release performance in vitro. Des Monomers Polym 18:678–689. https://doi.org/10.1080/15685551.2015.1070500

    CAS  Article  Google Scholar 

  19. 19.

    Nataraj SK, Yang KS, Aminabhavi TM (2012) Polyacrylonitrile-based nanofibers—a state-of-the-art review. Prog Polym Sci 37:487–513. https://doi.org/10.1016/j.progpolymsci.2011.07.001

    CAS  Article  Google Scholar 

  20. 20.

    Haider A, Haider S, Kang I-K (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188. https://doi.org/10.1016/J.ARABJC.2015.11.015

    CAS  Article  Google Scholar 

  21. 21.

    Beachley V, Wen X (2009) Effect of electrospinning parameters on the nanofiber diameter and length. Mater Sci Eng C Mater Biol Appl 29:663–668. https://doi.org/10.1016/j.msec.2008.10.037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Ma L, Deng L, Chen J (2014) Applications of poly(ethylene oxide) in controlled release tablet systems: a review. Drug Dev Ind Pharm 40:845–851. https://doi.org/10.3109/03639045.2013.831438

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Upadhye SB, Rajabi-Siahboomi AR (2013) Properties and applications of polyethylene oxide and ethylcellulose for tamper resistance and controlled drug delivery. Springer, New York, pp 145–158

    Google Scholar 

  24. 24.

    Peinado I, Mason M, Romano A et al (2016) Stability of β-carotene in polyethylene oxide electrospun nanofibers. Appl Surf Sci 370:111–116. https://doi.org/10.1016/J.APSUSC.2016.02.150

    CAS  Article  Google Scholar 

  25. 25.

    Agyemang FO, Li F, Momade FWY, Kim H (2016) Effect of poly(ethylene oxide) and water on electrospun poly(vinylidene fluoride) nanofibers with enhanced mechanical properties as pre-filter for oil-in-water filtration. Mater Chem Phys 182:208–218. https://doi.org/10.1016/J.MATCHEMPHYS.2016.07.025

    CAS  Article  Google Scholar 

  26. 26.

    Pinto NJ, Johnson AT, MacDiarmid AG et al (2003) Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl Phys Lett 83:4244–4246. https://doi.org/10.1063/1.1627484

    CAS  Article  Google Scholar 

  27. 27.

    Esmaeili A, Haseli M (2017) Electrospinning of thermoplastic carboxymethyl cellulose/poly(ethylene oxide) nanofibers for use in drug-release systems. Mater Sci Eng C 77:1117–1127. https://doi.org/10.1016/j.msec.2017.03.252

    CAS  Article  Google Scholar 

  28. 28.

    Cho E, Kim J, Park CW et al (2018) Chemically bound Prussian blue in sodium alginate hydrogel for enhanced removal of Cs ions. J Hazard Mater 360:243–249. https://doi.org/10.1016/J.JHAZMAT.2018.08.031

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Shen W, Hsieh Y-L (2014) Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking. Carbohydr Polym 102:893–900. https://doi.org/10.1016/j.carbpol.2013.10.066

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Miraftab M, Masood R (2011) Antimicrobial properties of alginate-chitosan (alchite) fibers developed for wound care applications development of polysaccharide based wound dressings. Artic J Ind Text, View project. https://doi.org/10.1177/1528083710376985

    Google Scholar 

  31. 31.

    de Etchepare M A, Barin JS, Cichoski AJ et al (2015) Microencapsulation of probiotics using sodium alginate. Ciência Rural 45:1319–1326. https://doi.org/10.1590/0103-8478cr20140938

    CAS  Article  Google Scholar 

  32. 32.

    Nasajpour A, Ansari S, Rinoldi C et al (2018) A multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics. Adv Funct Mater 28:1703437. https://doi.org/10.1002/adfm.201703437

    CAS  Article  Google Scholar 

  33. 33.

    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Szekalska M, Puciłowska A, Szymańska E et al (2016) Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016:1–17. https://doi.org/10.1155/2016/7697031

    CAS  Article  Google Scholar 

  35. 35.

    Saquing CD, Tang C, Monian B et al (2013) Alginate-polyethylene oxide blend nanofibers and the role of the carrier polymer in electrospinning. Ind Eng Chem Res 52:8692–8704. https://doi.org/10.1021/ie302385b

    CAS  Article  Google Scholar 

  36. 36.

    Hu C, Gong RH, Zhou FL (2015) Electrospun sodium alginate/polyethylene oxide fibers and nanocoated yarns. Int J Polym Sci 2015:1–12. https://doi.org/10.1155/2015/126041

    CAS  Article  Google Scholar 

  37. 37.

    Nasajpour A, Mandla S, Shree S et al (2017) Nanostructured fibrous membranes with rose spike-like architecture. Nano Lett 17:6235–6240. https://doi.org/10.1021/acs.nanolett.7b02929

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Abid S, Hussain T, Raza ZA, Nazir A (2018) Current applications of electrospun polymeric nanofibers in cancer therapy. Mater Sci Eng C. https://doi.org/10.1016/J.MSEC.2018.12.105

    Article  Google Scholar 

  39. 39.

    Dantas MDM, Cavalcante DRR, Araújo FEN et al (2011) Improvement of dermal burn healing by combining sodium alginate/chitosan-based films and low level laser therapy. J Photochem Photobiol B Biol 105:51–59. https://doi.org/10.1016/j.jphotobiol.2011.06.009

    CAS  Article  Google Scholar 

  40. 40.

    Abid S, Raza ZA, Rehman A (2016) Synthesis of poly(3-hydroxybutyrate) nanospheres and deposition thereof into porous thin film. Mater Res Express. https://doi.org/10.1088/2053-1591/3/10/105042

    Article  Google Scholar 

  41. 41.

    Safi S, Morshed M, Hosseini Ravandi SA, Ghiaci M (2007) Study of electrospinning of sodium alginate, blended solutions of sodium alginate/poly(vinyl alcohol) and sodium alginate/poly(ethylene oxide). J Appl Polym Sci 104:3245–3255. https://doi.org/10.1002/app.25696

    CAS  Article  Google Scholar 

  42. 42.

    Dhawan S, Dhawan K, Varma M, Sinha VR (2005) Applications of poly (ethylene oxide) in drug delivery systems. Pharm Technol 29:82–96

    CAS  Google Scholar 

  43. 43.

    Jensen BEB, Dávila I, Zelikin AN (2016) Poly(vinyl alcohol) physical hydrogels: matrix-mediated drug delivery using spontaneously eroding substrate. J Phys Chem B 120:5916–5926. https://doi.org/10.1021/acs.jpcb.6b01381

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630. https://doi.org/10.1081/DDC-120003853

    Article  PubMed  Google Scholar 

  45. 45.

    Thomas S (2000) Alginate dressings in surgery and wound management—part 1. J Wound Care 9:56–60. https://doi.org/10.12968/jowc.2000.9.2.26338

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Abid S, Hussain T, Nazir A et al (2018) Acetaminophen loaded nanofibers as a potential contact layer for pain management in burn wounds. Mater Res Express 5:085017. https://doi.org/10.1088/2053-1591/aad2eb

    CAS  Article  Google Scholar 

  47. 47.

    Abid S, Hussain T, Nazir A et al (2018) Development of nanofibers based neuropathic patch loaded with Lidocaine to deal with nerve pain in burn patients. IOP Conf Ser Mater Sci Eng 414:012019. https://doi.org/10.1088/1757-899X/414/1/012019

    Article  Google Scholar 

  48. 48.

    Mendham JE (2004) Gabapentin for the treatment of itching produced by burns and wound healing in children: a pilot study. Burns 30:851–853. https://doi.org/10.1016/J.BURNS.2004.05.009

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Malenfant A, Forget R, Papillon J et al (1996) Prevalence and characteristics of chronic sensory problems in burn patients. Pain 67:493–500

    CAS  Article  Google Scholar 

  50. 50.

    Mbah CJ, Nnadi CO (2014) Transdermal delivery of gabapentin: effect of cosolvent and microemulsion on permeation through the rat skin. Pharmacol Pharm 05:471–478. https://doi.org/10.4236/pp.2014.55057

    Article  Google Scholar 

  51. 51.

    Dhasmana S, Singh V, Pal US (2009) The combined analgesic effect of gabapentin and transdermal fentanyl patch on acute and chronic pain after maxillary cancer surgeries. J Maxillofac Oral Surg 8:55–59. https://doi.org/10.1007/s12663-009-0014-y

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Predescu O, Fish J, Smith T, Ward L (2007) Role of gabapentin in burned patients. Burns 33:S133. https://doi.org/10.1016/j.burns.2006.10.309

    Article  Google Scholar 

  53. 53.

    Sintov AC, Krymberk I, Gavrilov V, Gorodischer R (2003) Transdermal delivery of paracetamol for paediatric use: effects of vehicle formulations on the percutaneous penetration. J Pharm Pharmacol 55:911–919. https://doi.org/10.1211/0022357021486

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Ravula R, Herwadkar AK, Abla MJ et al (2016) Formulation optimization of a drug in adhesive transdermal analgesic patch. Drug Dev Ind Pharm 42:862–870. https://doi.org/10.3109/03639045.2015.1071832

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Conaghan PG, O’Brien CM, Wilson M, Schofield JP (2011) Transdermal buprenorphine plus oral paracetamol vs an oral codeine-paracetamol combination for osteoarthritis of hip and/or knee: a randomised trial. Osteoarthr Cartil 19:930–938. https://doi.org/10.1016/j.joca.2011.03.011

    CAS  Article  Google Scholar 

  56. 56.

    Bonino CA, Krebs MD, Saquing CD et al (2011) Electrospinning alginate-based nanofibers: From blends to crosslinked low molecular weight alginate-only systems. Carbohydr Polym 85:111–119. https://doi.org/10.1016/j.carbpol.2011.02.002

    CAS  Article  Google Scholar 

  57. 57.

    Park SA, Park KE, Kim WD (2010) Preparation of sodium alginate/poly(ethylene oxide) blend nanofibers with lecithin. Macromol Res 18:891–896. https://doi.org/10.1007/s13233-010-0909-y

    CAS  Article  Google Scholar 

  58. 58.

    Kataria K, Gupta A, Rath G et al (2014) In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int J Pharm 469:102–110. https://doi.org/10.1016/j.ijpharm.2014.04.047

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Barzegar-Jalali M, Adibkia K, Valizadeh H et al (2008) Kinetic analysis of drug release from nanoparticles. J Pharm Pharm Sci 11:167–177

    CAS  Article  Google Scholar 

  60. 60.

    Shoaib MH, Tazeen J, Merchant HA (2006) Original article evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak J Pharm Sci 19:119–124

    CAS  PubMed  Google Scholar 

  61. 61.

    Siepmann J, Peppas NA (2011) Higuchi equation: derivation, applications, use and misuse. Int J Pharm 418:6–12. https://doi.org/10.1016/j.ijpharm.2011.03.051

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Ka R (2014) Mathematical models of drug dissolution: a review. Sch Acad J Pharm 3:388–396

    Google Scholar 

  63. 63.

    Zahir A, Aslam Z, Kamal MS et al (2017) Development of novel cross-linked chitosan for the removal of anionic Congo red dye. J Mol Liq 244:211–218. https://doi.org/10.1016/J.MOLLIQ.2017.09.006

    CAS  Article  Google Scholar 

  64. 64.

    Wang T, Gu Q, Zhao J et al (2015) Calcium alginate enhances wound healing by up-regulating the ratio of collagen types I/III in diabetic rats. Int J Clin Exp Pathol 8:6636–6645

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923. https://doi.org/10.1002/jps.21210

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Lansdown ABG (2002) Calcium: a potential central regulator in wound healing in the skin. Wound Repair Regen 10:271–285. https://doi.org/10.1046/j.1524-475X.2002.10502.x

    Article  PubMed  Google Scholar 

  67. 67.

    Pucić I, Jurkin T (2012) FTIR assessment of poly(ethylene oxide) irradiated in solid state, melt and aqueous solution. Radiat Phys Chem 81:1426–1429. https://doi.org/10.1016/j.radphyschem.2011.12.005

    CAS  Article  Google Scholar 

  68. 68.

    Baishya H (2017) Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. J Dev Drugs 06:1–8. https://doi.org/10.4172/2329-6631.1000171

    CAS  Article  Google Scholar 

  69. 69.

    Conti S, Gaisford S, Buckton G, Conte U (2006) Solution calorimetry to monitor swelling and dissolution of polymers and polymer blends. Thermochim Acta 450:56–60. https://doi.org/10.1016/J.TCA.2006.07.017

    CAS  Article  Google Scholar 

  70. 70.

    Maver T, Kurečič M, Smrke DM et al (2016) Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J Sol-Gel Sci Technol 79:475–486. https://doi.org/10.1007/s10971-015-3888-9

    CAS  Article  Google Scholar 

  71. 71.

    Siepmann J (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 64:163–174. https://doi.org/10.1016/J.ADDR.2012.09.028

    Article  Google Scholar 

  72. 72.

    Caccavo D, Cascone S, Lamberti G, Barba AA (2015) Modeling the drug release from hydrogel-based matrices. Mol Pharm 12:474–483. https://doi.org/10.1021/mp500563n

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Kajjari PB, Manjeshwar LS, Aminabhavi TM (2011) Novel interpenetrating polymer network hydrogel microspheres of chitosan and poly(acrylamide)- grafted -guar gum for controlled release of ciprofloxacin. Ind Eng Chem Res 50:13280–13287. https://doi.org/10.1021/ie2012856

    CAS  Article  Google Scholar 

  74. 74.

    Holte Ø, Onsøyen E, Myrvold R, Karlsen J (2003) Sustained release of water-soluble drug from directly compressed alginate tablets. Eur J Pharm Sci 20:403–407. https://doi.org/10.1016/J.EJPS.2003.09.003

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Streubel A, Siepmann J, Dashevsky A, Bodmeier R (2000) pH-independent release of a weakly basic drug from water-insoluble and -soluble matrix tablets. J Control Release 67:101–110. https://doi.org/10.1016/S0168-3659(00)00200-5

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Dïnç CO, Kïbarer G, Güner A (2010) Solubility profiles of poly(ethylene glycol)/solvent systems. II. Comparison of thermodynamic parameters from viscosity measurements. J Appl Polym Sci 117:1100–1119. https://doi.org/10.1002/app.31829

    CAS  Article  Google Scholar 

  77. 77.

    Fu Y, Kao WJ (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 7:429–444. https://doi.org/10.1517/17425241003602259

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Rehage G, Ernst O, Fuhrmann J (1970) Fickian and non-Fickian diffusion in high polymer systems. Discuss Faraday Soc 49:208. https://doi.org/10.1039/df9704900208

    Article  Google Scholar 

  79. 79.

    Karimi M (2017) Diffusion in polymer solids and solutions. In: Markos J (ed) Mass transfer in chemical engineering processes. Scitus Academics, New York, p 260

    Google Scholar 

  80. 80.

    JacquesH CHM, Hopfenberg B, Stannett V (1974) Super case II transport of organic vapors in glassy polymers. Permeability of plastic films and coatings. Polymer science and technology. Springer, Bostan, pp 73–86

    Google Scholar 

  81. 81.

    Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223. https://doi.org/10.1016/S0928-0987(01)00095-1

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Sullad AG, Manjeshwar LS, Aminabhavi TM (2009) Controlled release of theophylline from interpenetrating blend microspheres of poly(vinyl alcohol) and methyl cellulose. J Appl Polym Sci. https://doi.org/10.1002/app.29625

    Article  Google Scholar 

  83. 83.

    Kajjari PB, Manjeshwar LS, Aminabhavi TM (2011) Semi-interpenetrating polymer network hydrogel blend microspheres of gelatin and hydroxyethyl cellulose for controlled release of theophylline. Ind Eng Chem Res 50:7833–7840. https://doi.org/10.1021/ie200516k

    CAS  Article  Google Scholar 

  84. 84.

    Sullad AG, Manjeshwar LS, Aminabhavi TM (2010) Novel pH-sensitive hydrogels prepared from the blends of poly(vinyl alcohol) with acrylic acid- graft -guar gum matrixes for isoniazid delivery. Ind Eng Chem Res 49:7323–7329. https://doi.org/10.1021/ie100389v

    CAS  Article  Google Scholar 

  85. 85.

    Gaabour LH (2015) Thermal spectroscopy and kinetic studies of PEO/PVDF loaded by carbon nanotubes. J Mater 2015:1–8. https://doi.org/10.1155/2015/824859

    CAS  Article  Google Scholar 

  86. 86.

    Theodosopoulos G, Zisis C, Charalambidis G et al (2017) Synthesis, characterization and thermal properties of poly(ethylene oxide), PEO, polymacromonomers via anionic and ring opening metathesis polymerization. Polymers (Basel) 9:145. https://doi.org/10.3390/polym9040145

    CAS  Article  PubMed Central  Google Scholar 

  87. 87.

    Kragović M, Daković A, Marković M (2016) Kinetic of thermal degradation of alginate-zeolite composites. Zast Mater 57:559–564. https://doi.org/10.5937/ZasMat1604559K

    Article  Google Scholar 

  88. 88.

    Yulong Z, Huang Z, Zhang J, et al (2010) Thermal degradation of sodium alginate-incorporated soy protein isolate/glycerol composite membranes. In: 17th IAPRI world conference on packaging, pp 402–405

  89. 89.

    Ahmadinegad M, Lashkarizadeh MR, Ghahreman M et al (2014) Efficacy of dressing with absorbent foam versus dressing with gauze in prevention of tracheostomy site infection. Tanaffos 13:13–19

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Bredow J, Hoffmann K, Oppermann J et al (2018) Evaluation of absorbent versus conventional wound dressing. Dtsch Arztebl Int 115:213–219. https://doi.org/10.3238/arztebl.2018.0213

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Li T-T, Lou C-W, Chen A-P et al (2016) Highly absorbent antibacterial hemostatic dressing for healing severe hemorrhagic wounds. Materials (Basel) 9:793. https://doi.org/10.3390/ma9090793

    CAS  Article  Google Scholar 

  92. 92.

    Sullad AG, Manjeshwar LS, Aminabhavi TM (2010) Polymeric blend microspheres for controlled release of theophylline. J Appl Polym Sci. https://doi.org/10.1002/app.31866

    Article  Google Scholar 

Download references


Authors acknowledge National Textile Research Center, National Textile University, Faisalabad (NTU), Pakistan, for testing, characterization and the supervisory panel for kind support.

Author information



Corresponding author

Correspondence to Sharjeel Abid.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest with anyone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abid, S., Hussain, T., Nazir, A. et al. A novel double-layered polymeric nanofiber-based dressing with controlled drug delivery for pain management in burn wounds. Polym. Bull. 76, 6387–6411 (2019). https://doi.org/10.1007/s00289-019-02727-w

Download citation


  • Burn wounds
  • Drug delivery
  • Electrospun nanofibers
  • Pain management