Skip to main content
Log in

Radiation crosslinking of acrylic acid/acrylonitrile–silver nitrate hydrogel as a sensitive glucose nanosensor

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This article presents an easy method for fabricating a glucose nanosensor using copolymeric material consisting of poly(acrylonitrile and acrylic acid) saturated with AgNO3. Poly(AAc/AN)/AgNO3 is used as an efficient non-enzymatic glucose nanosensor using Tollen’s reagent. The reagent consists of (–NH3) produced form alkaline hydrolysis of polyacrylonitrile and silver nitrate. Hydrolysis of polyacrylonitrile is very important in the pathway to glucose detection. The formation of Tollen’s reagent causes oxidation of glucose that leads to producing silver nanoparticles. Silver nanoparticles have been obtained by the reduction in silver nitrate using glucose as a reducing agent and poly(AAc/AN) as a stabilizing agent. The copolymer matrices effectively prevent the aggregation of silver nanoparticles. Transmission electron microscopy (TEM) and scanning electron microscope show a good dispersion of silver nanoparticles with average size of 8 nm. The colored degree of the obtained poly(AAc/AN)/Ag is used as an indicator of the concentration of glucose present in urine samples. Using the degree of color scale of poly(AAc/AN)/Ag, glucose is beneficial for a person who has a high glucose level in urine. Poly(AAc/AN)/Ag sensor has become a dominant role for glucose detection in urine as well as in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Oomura Y (1983) Glucose as a regulator of neuronal activity. Advances in metabolic disorders, vol 10. Elsevier, Amsterdam, pp 31–65

    Google Scholar 

  2. Dutta AK, Das S, Samanta S, Samanta PK, Adhikary B, Biswas P (2013) CuS nanoparticles as a mimic peroxidase for colorimetric estimation of human blood glucose level. Talanta 107:361–367

    Article  CAS  PubMed  Google Scholar 

  3. Mayou P, Hampapuram H, Price D, Weindel K, Snisarenko K, Mensinger MR, Bowman NL, Boock JR, Ullas AK, Reihman E, Simpson PC (2013) Systems and methods for detecting glucose level data patterns. U.S. Patent Application No. 13/566,874

  4. Gochman N, Schmitz JM (1972) Application of a new peroxide indicator reaction to the specific, automated determination of glucose with glucose oxidase. Clin Chem 18(9):943–950

    CAS  PubMed  Google Scholar 

  5. Ahmed N (2005) Advanced glycationendproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract 67(1):3–21

    Article  CAS  PubMed  Google Scholar 

  6. Lind T, Shepherd MM, Cheyne GA (1971) Enzymatic methods for determining glucose in urine. Ann Clin Biochem 8(1–6):213–215

    Article  Google Scholar 

  7. El-Batal AI, Mosallam FM, El-Sayyad GS (2018) Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes. J Clust Sci 29(6):1003–1015

    Article  CAS  Google Scholar 

  8. Baraka A, Dickson S, Gobara M, El-Sayyad GS, Zorainy M, Awaad MI, Tawfic AF (2017) Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chem Pap 71(11):2271–2281

    Article  CAS  Google Scholar 

  9. El-Batal AI, Haroun BM, Farrag AA, Baraka A, El-Sayyad GS (2014) Synthesis of silver nanoparticles and incorporation with certain antibiotic using gamma irradiation. Br J Pharm Res 4(11):1341

    Article  Google Scholar 

  10. Ashour AH, El-Batal AI, Maksoud MIAA, El-Sayyad GS, Labib S, Abdeltwab E, El-Okr MM (2018) Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol-gel technique. Particuology 40:141–151

    Article  CAS  Google Scholar 

  11. Ghobashy MM, Elhady MA (2017) Radiation crosslinked magnetized wax (PE/Fe3O4) nano composite for selective oil adsorption. Compos Commun 3:18–22

    Article  Google Scholar 

  12. Ghobashy MM, Mohamed TM (2018) Radiation preparation of conducting nanocomposite membrane based on (copper/polyacrylic acid/poly vinyl alcohol) for rapid colorimetric sensor of mercury and silver ions. J Inorg Organomet Polym Mater 28:2297–2305

    Article  CAS  Google Scholar 

  13. Ghobashy MM, Alkhursani SA, Madani M (2018) Radiation-induced nucleation and pH-controlled nanostructure shape of polyaniline dispersed in DMF. Polym Bull 75:5477–5492

    Article  CAS  Google Scholar 

  14. He R, Qian X, Yin J, Zhu Z (2002) Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem 12(12):3783–3786

    Article  CAS  Google Scholar 

  15. Rodriguez-Sanchez L, Blanco MC, Lopez-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104(41):9683–9688

    Article  CAS  Google Scholar 

  16. Pastoriza-Santos I, Liz-Marzán LM (2002) Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18(7):2888–2894

    Article  CAS  Google Scholar 

  17. Pastoriza-Santos I, Liz-Marzán LM (2008) Colloidal silver nanoplates. State of the art and future challenges. J Mater Chem 18(15):1724–1737

    Article  CAS  Google Scholar 

  18. Mohamady Ghobashy M, Awad A, Elhady MA, Elbarbary AM (2017) Silver rubber-hydrogel nanocomposite as pH-sensitive prepared by gamma radiation: part I. Cogent Chem 3(1):1328770

    Google Scholar 

  19. Hirai H, Chawanya H, Toshima N (1985) Colloidal palladium protected with poly (N-vinyl-2-pyrrolidone) for selective hydrogenation of cyclopentadiene. React Polym, Ion Exch, Sorbents 3(2):127–141

    Article  CAS  Google Scholar 

  20. Sachdeva A, Sodaye S, Pandey AK, Goswami A (2006) Formation of silver nanoparticles in poly (perfluorosulfonic) acid membrane. Anal Chem 78(20):7169–7174

    Article  CAS  PubMed  Google Scholar 

  21. Purohit K, Mirville M, Yang SC, Shukla A, Chalivendra VB (2011) Conductive nano-brush synthesized by physical grafting of conducting polymers on carbon nanotube. In: MRS online proceedings library archive, p 1304‏

  22. Carrasco PM, Ruiz de Luzuriaga A, Constantinou M, Georgopanos P, Rangou S, Avgeropoulos A, Garcia I (2011) Influence of anion exchange in self-assembling of polymeric ionic liquid block copolymers. Macromolecules 44(12):4936–4941

    Article  CAS  Google Scholar 

  23. Lien CH, Chen JC, Hu CC, Wong DSH (2014) Cathodic deposition of binary nickel–cobalt hydroxide for non-enzymatic glucose sensing. J Taiwan Inst Chem Eng 45(3):846–851

    Article  CAS  Google Scholar 

  24. Meng L, Jin J, Yang G, Lu T, Zhang H, Cai C (2009) Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal Chem 81(17):7271–7280

    Article  CAS  PubMed  Google Scholar 

  25. Plamper FA (2014) Changing polymer solvation by electrochemical means: basics and applications. Porous carbons–hyperbranched polymers–polymer solvation. Springer, Berlin, pp 125–212

    Google Scholar 

  26. Ghobashy MM (2017) Combined ultrasonic and gamma-irradiation to prepare TiO2@PET-g-PAAc fabric composite for self-cleaning application. Ultrason Sonochem 37:529–535

    Article  CAS  PubMed  Google Scholar 

  27. Ghobashy MM (2017) In-situ core-shell polymerization of magnetic polymer nanocomposite (PAAc/Fe3O4) particles via gamma radiation. Nanocomposites. https://doi.org/10.1080/20550324.2017.1316600

    Article  Google Scholar 

  28. Ghobashy MM (2017) Effect of sulfonated groups on the proton and methanol transport behavior of irradiated PS/PEVA membrane. Int J Plast Technol 21(1):130–143. https://doi.org/10.1007/s12588-017-9176-5

    Article  CAS  Google Scholar 

  29. Ghobashy MM, Abdel Reheem AM, Mazied NA (2017) Ion etching induced surface patterns of blend polymer (poly ethylene glycol–poly methyl methacrylate) irradiated with gamma rays. Int Polym Proc 32(2):174–182

    Article  CAS  Google Scholar 

  30. Panapoy M, Dankeaw A, Ksapabutr B (2008) Int J Sci Technol 13:11

    Google Scholar 

  31. Ghobashy MM, Khafaga MR (2017) Chemical modification of nanopolyacrylonitrile prepared by emulsion polymerization induced by gamma radiation and their use for removal of some metal ions. J Polym Environ 25(2):343–348

    Article  CAS  Google Scholar 

  32. Gražėnaitė E, Kiuberis J, Beganskienė A, Senvaitienė J, Kareiva A (2014) XRD and FTIR characterisation of historical green pigments and their lead-based glazes. Chemija 25(4):199–205

    Google Scholar 

  33. Nandapure B, Kondawar S, Salunkhe M, Nandapure A (2013) J Compos Mater 47(5):559

    Article  Google Scholar 

  34. Jonynaite D, Senvaitiene J, Beganskiene A, Kareiva A (2010) Spectroscopic analysis of blue cobalt smalt pigment. Vib Spectrosc 52(2):158–162

    Article  CAS  Google Scholar 

  35. Gu F, Wang SF, Lü MK, Qi YX, Zhou GJ, Xu D, Yuan DR (2003) Luminescent properties of Mn2+-doped SnO2 nanoparticles. Inorg Chem Commun 6(7):882–885

    Article  CAS  Google Scholar 

  36. Kumar H, Rani R (2013) Structural characterization of silver nanoparticles synthesized by micro emulsion route. Int J Eng Innov Technol 3:344–348

    Google Scholar 

  37. Deacon GB, Huber F, Phillips RJ (1985) Diagnosis of the nature of carboxylate coordination from the direction of shifts of carbon–oxygen stretching frequencies. Inorg Chim Acta 104:41–45

    Article  CAS  Google Scholar 

  38. Deacon GB, Phillips RJ (1980) Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev 33:227–250

    Article  CAS  Google Scholar 

  39. Pereira DC, Faria DLAd, Constantino VRL (2006) CuII hydroxy salts: characterization of layered compounds by vibrational spectroscopy. J Braz Chem Soc 17:1651–1657

    Article  CAS  Google Scholar 

  40. Azócar MI, Gómez G, Levín P, Paez M, Muñoz H, Dinamarca N (2014) Antibacterial behavior of carboxylate silver (I) complexes. J Coord Chem 67(23–24):3840–3853

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Mansour Mohamed.

Ethics declarations

Conflict of interest

The authors confirm that no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobashy, M.M., Mohamed, T.M. Radiation crosslinking of acrylic acid/acrylonitrile–silver nitrate hydrogel as a sensitive glucose nanosensor. Polym. Bull. 76, 6245–6255 (2019). https://doi.org/10.1007/s00289-019-02722-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02722-1

Keywords

Navigation