Skip to main content

Advertisement

Log in

Investigating mechanical properties of leather treated with Aloe barbadensis Miller and Carrageenan using existing theoretical models

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Several studies have alluded to the possibility and importance of utilizing Aloe barbadensis Miller and Carrageenan to increase leather functionalities without impacting on the environment negatively and retaining the mechanical performance of the final leather. In order to understand the actual effect of A. barbadensis Miller and Carrageenan on the mechanical effect, there is need to understand the mechanism of reinforcement or weakening. This will enhance the scientific understanding of the processes of deformation and mechanical failure of the leather materials, and the connections between the structure, processing and their underlying mechanisms. This study presents the results of using the existing empirical models and semi-empirical equations to both predict the strength properties of leather treated with A. barbadensis Miller mixed with Carrageenan and determine their mechanism of strengthening/weakening in the leather matrix. Prediction using the existing empirical models and equations shows reasonable agreement with experimental data and can be used to explain the strengthening/weakening mechanism. Results clearly indicate that adhesion is strong in fatliquored leather, and it significantly influences the strength properties. Fatliquoring agents act as coupling agents that improve wetting and hence adhesion. The study recommends at most 3.784% of the A. barbadensis Miller and Carrageenan by weight of crust and incorporation be done after fatliquoring process. Although parameters concerning leather matrix irregularities and particle sizes were not accounted for, the study suggests any processes that can increase surface free energy of the fillers to increase the work of adhesion at the interface such as filler sulphiting and surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wenger MPE, Bozec L, Horton AM, Mesquida P (2007) Mechanical properties of collagen fibrils. Biophys J 93:1255–1263

    Article  CAS  Google Scholar 

  2. Nalyanya KM, Rop RK, Onyuka A, Kamau J (2015) Tensile properties of Kenyan Indigenous Boran bovine Pickled and Tanned hide. Int J Sci Res 4:2149–2154

    Google Scholar 

  3. Nalyanya KM, Rop RK, Onyuka A, Migunde PO, Ngumbu RG (2016) Thermal and mechanical analysis of pickled and tanned cowhide: effect of solar radiations. J Appl Polym Sci 133:43208. https://doi.org/10.1002/app.43208

    Article  CAS  Google Scholar 

  4. Bitlisli B, Zengin A, Yeldiyar G, Kairanbekov G, Kucukakin E (2013) Upper leathers in shoe manufacturing. J Ind Technol Eng 2:37–41

    Google Scholar 

  5. Wells HC, Edmonds RL, Kirby N, Hawley A, Mudie ST, Haverkamp RG (2013) Collagen fibril diameter and leather strength. J Agric Food Chem 61:11524–11531

    Article  CAS  Google Scholar 

  6. Litke KS, Widdemer JD (2003) Aloe vera processed leather and leather gloves, garments, shoes and sandals made from Aloe vera processed leather and a process for making Aloe vera processed leather. US Patent No: 2003/0217416 A1

  7. Bitlisli BO, Yasa I, Aslan A, Cadırcı BH, Basaran B (2010) Physical and antimicrobial characteristics of Aloe vera treated split suede leather. J Am Leather Chem Assoc 105:34–40

    CAS  Google Scholar 

  8. Hamman JH (2008) Composition and applications of Aloe vera leaf gel. Molecules 13:1599–1616

    Article  CAS  Google Scholar 

  9. Hsueh CH (1987) Effects of aspect ratios of ellipsoidal inclusions on elastic stress transfer of ceramic composites. J Am Ceram Soc 72:344–347

    Article  Google Scholar 

  10. Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J (2001) Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer 42:8759–8768

    Article  CAS  Google Scholar 

  11. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites B 39:933–961

    Article  Google Scholar 

  12. Sumita M, Shizuma T, Miyasaka K, Ishikawa K (1983) Effect of reducible properties of temperature, rate of strain, and filler content on the tensile yield stress of nylon 6 composites filled with ultrafine particles. J Macromol Sci B 22:601–618

    Article  Google Scholar 

  13. Kalaprasad G, Joseph K, Thomas S, Pavithran C (1997) Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites. J Mater Sci 32:4261–4267

    Article  CAS  Google Scholar 

  14. Lau KT, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Composite B 37:425–436

    Article  Google Scholar 

  15. Martone A, Formicola C, Giordano M, Zarrelli M (2010) Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol 70:1154–1160. https://doi.org/10.1016/j.compscitech.2010.03.001

    Article  CAS  Google Scholar 

  16. Dekkers MEJ, Heikens D (1983) The effect of interfacial adhesion on the tensile behavior of polystyrene–glass-bead composites. J Appl Polym Sci 28:3809–3815

    Article  CAS  Google Scholar 

  17. Moloney AC, Kausch HH, Kaiser T, Beer HR (1987) A review: parameters determining the strength and toughness of particulate filled epoxide resins. J Mater Sci 22:381–393

    Article  CAS  Google Scholar 

  18. Hu Y, Jang I, Sinnott SB (2003) Modification of carbon nanotube-polystyrene matrix composites through polyatomic-ion beam deposition: predictions from molecular dynamics simulations. Compos Sci Technol 63:1663–1669

    Article  CAS  Google Scholar 

  19. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385

    Article  CAS  Google Scholar 

  20. Ervina J, Mariatti M, Hamdan S (2016) Effect of filler loading on the tensile properties of multi-walled carbon nanotube and graphene nano powder filled epoxy composites. Procedia Chem 19:897–905

    Article  CAS  Google Scholar 

  21. Einstein A (1956) Investigation on theory of Brownian motion. Dover, New York

    Google Scholar 

  22. Islam S, Masoodi R, Rostami H (2013) The effect of nanoparticles percentage on mechanical behavior of silica-epoxy nanocomposites. J Nanosci 2013:1–10

    Article  Google Scholar 

  23. Guth E (1945) Theory of filler reinforcement. J Appl Phys 16:20–25

    Article  CAS  Google Scholar 

  24. Danusso F, Tieghi G (1986) Strength versus composition of rigid matrix particulate composites. Polymer 27:1385–1390

    Article  CAS  Google Scholar 

  25. Levita G, Marchetti A, Lazzeri B (1989) A fracture of ultrafine calcium carbonate/polypropylene composites. Polym Compos 10:39–43

    Article  CAS  Google Scholar 

  26. Nielsen LE (1966) Simple theory of stress–strain properties of filled polymers. J Appl Polym Sci 10:97–103

    Article  CAS  Google Scholar 

  27. Piggott MR, Leidner J (1974) Misconceptions about filled polymers. J Appl Polym Sci 18:1619–1623

    Article  CAS  Google Scholar 

  28. Guptha AK, Purwar SN (1984) Melt rheological properties of polypropylene/SEBS (styrene–ethylene butylene–styrene block copolymer) blends. J Appl Polym Sci 29:3513

    Article  Google Scholar 

  29. Nicolais NL, Narkis NM (1971) Stress-strain behavior of styrene-acrylonitrile/glass bead composites in the glassy region. Polym Eng Sci 11:194–199

    Article  CAS  Google Scholar 

  30. Leidner J, Woodhams RT (1974) Strength of polymeric composites containing spherical fillers. J Appl Polym Sci 18:1639–1654

    Article  CAS  Google Scholar 

  31. Bigg DM (1987) Mechanical properties of particulate filled polymers. Polym Compos 8:115–122

    Article  CAS  Google Scholar 

  32. Pukanszky B, Turcsanyi B, Tudos F (1988) Effect of interfacial interaction on the tensile yield stress of polymer composites. In: Ishida H (ed) Interfaces in polymer, ceramic and metal matrix composites. Elsevier, Amsterdam, pp 467–477

    Google Scholar 

  33. Turcsanyi B, Pukanszky B, Tudos F (1988) Composition dependence of tensile yield stress in filled polymers. J Mater Sci Lett 7:160–162

    Article  CAS  Google Scholar 

  34. Svab I, Musil V, Leskovac M (2005) The adhesion phenomena in polypropylene/wollastonite composites. Acta Chim Slov 52:264–271

    CAS  Google Scholar 

  35. Liang JZ, Li RKY (1933) Prediction of tensile yield strength of rigid inorganic particulate filled thermoplastic composites. J Mater Proc Technol 83:127–130

    Article  Google Scholar 

  36. Goodier JN (1933) Concentration of stress around spherical and cylindrical inclusions and flaws. J Appl Mech 55:A39

    Google Scholar 

  37. Vollenberg PHT, Heikens D (1989) Particle size dependence of the Young’s modulus of filled polymers: 1. Preliminary experiments. Polymer 30:1656–1662

    Article  CAS  Google Scholar 

  38. Pukanszky B (1990) Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites 21:255–262

    Article  CAS  Google Scholar 

  39. Buggy M, Bradley G, Sullivan A (2005) Polymer–filler interactions in kaolin/nylon 6, 6 composites containing a silane coupling agent. Compos Part A Appl Sci Manuf 36:437–442

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kallen Mulilo Nalyanya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalyanya, K.M., Rop, R.K., Onyuka, A. et al. Investigating mechanical properties of leather treated with Aloe barbadensis Miller and Carrageenan using existing theoretical models. Polym. Bull. 76, 6123–6136 (2019). https://doi.org/10.1007/s00289-019-02706-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02706-1

Keywords

Navigation