Skip to main content

Advertisement

Log in

Study of optical and electrical property of NaI-doped PPy thin film with excellent photocatalytic property at visible light

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Conductive polymers perform as a new class of very active photocatalysts under visible light. Among them, polypyrrole (PPy) is one of the most promising conjugated polymers with a wide range of applications. PPy and doped PPy were synthesized on glass plate in thin film form by a facile simple successive ionic layer adsorption and reaction method. Polypyrrole is doped with dodecyl benzene sulphonic acid, toluene sulphonic acid, hydrochloric acid, sodium iodide (NaI), citric acid (commercial) and citric acid (lemon). The synthesized thin film was well characterized using UV–visible spectrophotometer, scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and photoluminescence (PL). The electrical conductivity was measured by Hall effect measurements. Among various organic and inorganic acid dopants, NaI-doped PPy thin film exhibited narrow band gap and has excellent ability to absorb light in red region of the spectrum. NaI-doped PPy thin film showed higher conductivity when compared to other dopants. A lower PL intensity of NaI-PPy thin film indicates higher electron–hole pair separation efficiency. The photocatalytic activities of PPy thin film and NaI-doped PPy thin film on rhodamine 6G dye under visible light were systematically investigated. NaI-doped PPy thin film had better degradation efficiency than PPy due to its higher electron–hole pair separation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  PubMed  Google Scholar 

  2. Chen X, Li C, Grätzel M, Kostecki R, Mao SS (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41:7909–7937

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171

    Article  CAS  PubMed  Google Scholar 

  4. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  PubMed  Google Scholar 

  5. Schneider J, Matsuoka M, Takeuch M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D (2014) Understanding TiO2 photocatalysis: mechanisms and materials. J Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  6. Xu X, Randorn C, Efstathiou P, Irvine JTS (2012) A red metallic oxide photocatalyst. Nat Mater 11:595–598

    Article  CAS  PubMed  Google Scholar 

  7. Liu L, Ouyang S, Ye J (2013) Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance. Angew Chem Int Ed 52:6689–6694

    Article  CAS  Google Scholar 

  8. Zhang N, Zhang Y, Xu J (2012) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4:5792–5813

    Article  CAS  PubMed  Google Scholar 

  9. Li L, Yan J, Wang T, Zhao Z, Zhang J, Gong J, Guan N (2015) Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat Commun 6:5881–5891

    Article  PubMed  Google Scholar 

  10. Tao J, Luttrell T, Batzill M (2011) A two-dimensional phase of TiO2 with a reduced bandgap. Nat Chem 3:296–300

    Article  CAS  PubMed  Google Scholar 

  11. Chen XB, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  CAS  PubMed  Google Scholar 

  12. Linic S, Christopher P, Ingram DB (2001) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  CAS  Google Scholar 

  13. Weng L, Zhang H, Govorov AO, Ouyang M (2014) Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis. Nat Commun 5:4792–4802

    Article  CAS  PubMed  Google Scholar 

  14. Grabowska E, Zaleska A, Sorgues S, Kunst M, Etcheberry A, Colbeau-Justin C, Remita H (2013) Modification of titanium(IV) dioxide with small silver nanoparticles: application in photocatalysis. J Phys Chem C 117:1955–1962

    Article  CAS  Google Scholar 

  15. Hai Z, Kolli N, Uribe D, Beaunier P, Yacaman M, Vigneron J, Etcheberry A, Sorgues S, Justin C, Chen J, Remita H (2013) Modification of TiO2 by bimetallic Au–Cu nanoparticles for wastewater treatment. J Mater Chem A 1:10829–10836

    Article  CAS  Google Scholar 

  16. Kowalska E, Yoshiiri K, Wei Z, Zheng S, Kastl E, Remita H, Ohtani B, Rau S (2015) Hybrid photocatalysts composed of titania modified with plasmonic nanoparticles and ruthenium complexes for decomposition of organic compounds. Appl Catal B Environ 178:133–143

    Article  CAS  Google Scholar 

  17. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25:3264–3294

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh S, Kouame N, Remita S, Goubard F, Aubert P, Dazzi A, Besseau A, Remita H (2015) Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater 14:505–510

    Article  CAS  PubMed  Google Scholar 

  19. Khodagholy T, Doublet P, Quilichini M, Gurfinkel P, Leleux A, Ghestem E, Ismailova T, Hervé S, Sanaur C Bernard, Malliaras G (2013) In vivo recordings of brain activity using organic transistors. Nat Commun 4:1575–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Yang (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Article  CAS  Google Scholar 

  21. Cai M, Ye Z, Xiao T, Liu R, Chen Y, Mayer R, Biswas R, Ho K, Shinar R, Shinar J (2012) Extremely efficient indium–tin-oxide-free green phosphorescent organic light-emitting diodes. Adv Mater 24:4337–4342

    Article  CAS  PubMed  Google Scholar 

  22. Muktha B, Madras G, Guru Row U, Patil S (2007) Conjugated polymers for photocatalysis. J Phys Chem B 111:7994–7998

    Article  CAS  PubMed  Google Scholar 

  23. Alam P, Alam A, Anwer MdK, Alqasoumi S (2014) Quantitative estimation of hesperidin by HPTLC in different varieties of citrus peels. Asian Pac J Trop Biomed 4(4):262–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rauf A, Uddin G, Ali J (2014) Phytochemical analysis and radical scavenging profile of juices of Citrus sinensis, Citrus anrantifolia, and Citrus limonum. Organ Med Chem Lett 4:5–8

    Article  CAS  Google Scholar 

  25. Wang ZL, Kong XY, Ding Y, Gao P, Hughes WL, Yang R, Zhang Y (2004) Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv Func Mater 14:943–956

    Article  CAS  Google Scholar 

  26. Shiigi H, Kishimoto M, Yakabe H, Deore B, Nagaoka T (2002) Highly selective molecularly imprinted overoxidized polypyrrole colloids one-step preparation technique. Anal Sci 18:41–45

    Article  CAS  PubMed  Google Scholar 

  27. Song MK, Kim YT, Kim BS, Kim J, Char K, Rhee HW (2004) Synthesis and characterization of soluble polypyrrole doped with alkylbenzenesulfonic acids. Synth Met 141:315–319

    Article  CAS  Google Scholar 

  28. Hazarika J, Kumar A (2016) Studies of structural, optical, dielectric relaxation and ac conductivity of different alkylbenzenesulfonic acids doped polypyrrole nanofibers. Physica B Condens Matter 481:268–279

    Article  CAS  Google Scholar 

  29. Chen L, Wang K, Mahmoud SM, Li Y, Huang H et al (2015) Effects of replacing thiophene with 5,5-dimethylcyclopentadiene in alternating poly(phenylene), poly(3-hexylthiophene), and poly(fluorene) copolymer derivatives. Polym Chem 6:7533–7542

    Article  CAS  Google Scholar 

  30. Navale ST, Mane AT, Ghanwat AA, Mulik AR, Patil VB (2014) Camphor sulfonic acid (CSA) doped polypyrrole (PPy) films: measurement of microstructural and optoelectronic properties. Measurement 50:363–369

    Article  Google Scholar 

  31. Arora K, Chaubey A, Singhal R, Singh RP et al (2006) Application of electrochemically prepared polypyrrole-polyvinyl sulphonate films to DNA biosensor. Biosens Bioelectron 21:1777–1783

    Article  CAS  PubMed  Google Scholar 

  32. Wang G, NeoH KG, Kang ET (2004) Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films. Thin Solid Films 446:205–217

    Article  CAS  Google Scholar 

  33. Jayamurgan P, Ponnuswamy V, Ashokan S, Mahalingam T (2013) The effect of dopant on structural, thermal and morphological properties of DBSA-doped polypyrrole. Iran Polym J 22:219–225

    Article  CAS  Google Scholar 

  34. Galář B, Dzurňák P, Malý J, Čermák A, Kromka M, Omastová B Rezek (2013) Chemical changes and photoluminescence properties of UV modified polypyrrole. Int J Electrochem Sci 8:57–70

    Google Scholar 

  35. Jang KS, Ko HC, Moon B, Lee H (2005) Observation of photoluminescence in polypyrrole micelles. Synth Met 150:127–131

    Article  CAS  Google Scholar 

  36. Son AJR, Lee H, Moon B (2007) Morphology and photoluminescence of colloidal polypyrrole nanoparticles. Synth Met 157:597–602

    Article  CAS  Google Scholar 

  37. Shaktawat V, Jain N, Saxena R, Saxena NS, Sharma TP (2006) Electrical conductivity and optical band gap studies of polypyrrole doped with different acids. Polym Bull 57:535–542

    Article  CAS  Google Scholar 

  38. Naveen Kumar M, Nagabhooshanam M, Anand Rao M, Bhagvanth Rao M (2001) Preparation and characterization of doped polybenzidine. Cryst Res Technol 36:309–317

    Article  Google Scholar 

  39. Khanmirzaei MH, Ramesh S, Ramesh K (2015) Effect of different iodide salts on ionic conductivity and structural and thermal behavior of rice-starch-based polymer electrolytes for dye-sensitized solar cell application. Ionics 21:2383–2391

    Article  CAS  Google Scholar 

  40. Singh R, Baghel J, Shukla S, Bhattacharya B, Rhee H-W, Singh PK (2014) Detailed electrical measurements on sago starch biopolymer solid electrolyte. Phase Transit 87:1237–1245

    Article  CAS  Google Scholar 

  41. Sirakawa H, Louis EJ, Macdiarmid AG, Chiang CK, Heegert AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc, Chem Commun 16:578–580

    Article  Google Scholar 

  42. Mabrook MF, Pearson C, Petty MC (2006) Inkjet-printed polypyrrole thin films for vapour sensing. Sens Actuators, B 115:547–551

    Article  CAS  Google Scholar 

  43. Tinacba EJC, Nuñez JA, Tumlos RB, Ramo HJ (2016) ZnO/Zn and ZnO film deposited via microwave atmospheric plasma jet as photo-catalyst for Rhodamine 6G dye degradation. Thin Solid Films. https://doi.org/10.1016/j.tsf.2016.07.01

    Article  Google Scholar 

  44. Kansal SK, Singh M, Sud D (2007) Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater 141:581–590

    Article  CAS  PubMed  Google Scholar 

  45. Ghosh S, Kouame N, Remita S, Ramos L, Goubard F, Aubert P, Dazzi A, Deniset-Besseau A, Remita H (2015) Visible-light active conducting polymer nanostructures with superior photocatalytic activity. Sci Rep 5:18002–18011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ovando-Medina VM, López RG, Castillo-Reyes BE, Alonso-Dávila PA, Martínez-Gutiérrez H, González-Ortega O, Farías-Cepeda L (2015) Composite of acicular rod-like ZnO nanoparticles and semiconducting polypyrrole photoactive under visible light irradiation for methylene blue dye photodegradation. Colloid Polym Sci 293:3459–3469

    Article  CAS  Google Scholar 

  47. Montazerozohori M, Nasr-Esfahani M, Joohari S (2012) Iron and aluminium based adsorption strategies for removing arsenic from water. Environ Prot Eng 38:45–56

    CAS  Google Scholar 

Download references

Acknowledgements

This work is mainly supported by the research funds from the management of Hindustan University through CENCON. Authors also acknowledge research funding from Dongguk University though QSRC and NITA. This research was also supported by Leading Foreign Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education Science and Technology (MEST) (No. 2013-044975) and by the International Research and Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) of Korea (Grant Number: 2012-033431).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Srimathi Krishnaswamy or Ganapathi Subramaniam Nagarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnaswamy, S., Ragupathi, V., Raman, S. et al. Study of optical and electrical property of NaI-doped PPy thin film with excellent photocatalytic property at visible light. Polym. Bull. 76, 5213–5231 (2019). https://doi.org/10.1007/s00289-018-2650-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2650-1

Keywords

Navigation