Skip to main content
Log in

The ultrasonic-assisted synthesis of tetrafunctional acrylated epoxy clay nanocomposite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The acrylation of a tetrafunctional epoxy resin was carried out through the reaction with acrylic acid in the presence of two different organoclays under ultrasonic irradiation. As reinforcing agents, two different kinds of commercial organoclays, namely Cloisite 15A and Cloisite 30B, were used individually in nanocomposite fabrication. The acrylation reaction of epoxy resin in addition to curing processes was monitored by Fourier transform infrared spectroscopy. The main advantage of the ultrasonic process was a significant reduction in reaction time as low as 8 min. Thermal and mechanical properties of the UV-cured samples were investigated by means of differential scanning calorimetry, dynamic mechanical thermal analysis and the film hardness. The clay dispersion was characterized through X-ray diffraction patterns coupling with the images of two microscopic techniques. The enhancements in nanocomposite glass transition temperature, thermal stability and mechanical properties may be attributed to proper dispersion of organoclay platelets as evidenced in transmission electron microscopy. However, the nanocomposite films reinforced with the Cloisite 30B exhibit more pronounced improvements in the final properties of the nanocomposite film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lebaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29. https://doi.org/10.1016/S0169-1317(99)00017-4

    Article  CAS  Google Scholar 

  2. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  3. Rapacz-Kmita A, Stodolak-Zych E, Szaraniec B et al (2015) Effect of clay mineral on the accelerated hydrolytic degradation of polylactide in the polymer/clay nanocomposites. Mater Lett 146:73–76. https://doi.org/10.1016/j.matlet.2015.01.135

    Article  CAS  Google Scholar 

  4. Sancaktar E, Kuznicki J (2011) Nanocomposite adhesives: mechanical behavior with nanoclay. Int J Adhes Adhes 31:286–300. https://doi.org/10.1016/j.ijadhadh.2010.09.006

    Article  CAS  Google Scholar 

  5. Krishnamoorti R, Ren J, Silva AS (2001) Shear response of layered silicate nanocomposites. J Chem Phys 114:4968–4973. https://doi.org/10.1063/1.1345908

    Article  CAS  Google Scholar 

  6. Park JH, Jana SC (2003) The relationship between nano- and micro-structures and mechanical properties in PMMA–epoxy–nanoclay composites. Polym (Guildf) 44:2091–2100. https://doi.org/10.1016/S0032-3861(03)00075-2

    Article  CAS  Google Scholar 

  7. Uhl FM, Webster DC, Davuluri SP, Wong SC (2006) UV curable epoxy acrylate-clay nanocomposites. Eur Polym J 42:2596–2605. https://doi.org/10.1016/j.eurpolymj.2006.06.016

    Article  CAS  Google Scholar 

  8. Kulkarni RD (2013) UV cure acrylate monomers: synthesis, analysis and storage. Pigment Resin Technol 42:53–67. https://doi.org/10.1108/03699421311288760

    Article  CAS  Google Scholar 

  9. Shukla V, Bajpai M, Singh DK et al (2004) Review of basic chemistry of UV-curing technology. Pigment Resin Technol 33:272–279. https://doi.org/10.1108/03699420410560461

    Article  CAS  Google Scholar 

  10. Pavlacky Erin, Neena Ravindran DCW (2012) Novel in situ synthesis in the preparation of ultraviolet-curable nanocomposite barrier coatings. J Appl Polym Sci 125:3836–3848. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  11. Jellali R, Campistron I, Laguerre A et al (2013) Synthesis and crosslinking kinetic study of epoxidized and acrylated/epoxidized oligoisoprenes: comparison between cationic and radical photopolymerization. J Appl Polym Sci 128:2489–2497. https://doi.org/10.1002/app.38488

    Article  CAS  Google Scholar 

  12. Schwalm R (2006) UV coating (basics, recent developments and new applications), Chap. 6. Elsevier, Amsterdam

    Google Scholar 

  13. Decker C (2002) Kinetic study and new applications of UV radiation curing. Macromol Rapid Commun 23:1067–1093

    Article  CAS  Google Scholar 

  14. Zhang D, Liang H, Bu J et al (2015) UV curable soybean-oil hybrid systems based on thiol-acrylate and thiol-ene-acrylate chemistry. J Appl Polym Sci 132:1–9. https://doi.org/10.1002/app.42095

    Article  CAS  Google Scholar 

  15. Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci. https://doi.org/10.1146/annurev.matsci.29.1.295

    Article  Google Scholar 

  16. Salimi A, Omidian H, Zohuriaan-Mehr MJ (2003) Mechanical and thermal behavior of modified epoxy–novolak film adhesives. J Adhes Sci Technol 17:1847–1861. https://doi.org/10.1163/156856103322538723

    Article  CAS  Google Scholar 

  17. Palanisamy A, Rao BS (2006) Tetrafunctional acrylates based on β-hydroxy alkyl amides as crosslinkers for UV curable coatings. Prog Org Coat 56:297–303. https://doi.org/10.1016/j.porgcoat.2006.05.014

    Article  CAS  Google Scholar 

  18. Henglein A (1987) Sonochemistry: historical developments and modern aspects. Ultrasonics 25:6–16. https://doi.org/10.1016/0041-624X(87)90003-5

    Article  CAS  Google Scholar 

  19. Paulusse JOSMJ, Sijbesma RP (2006) Ultrasound in polymer chemistry: revival of an established technique. J Polym Sci Part A Polym Chem. https://doi.org/10.1002/pola.21646

    Article  Google Scholar 

  20. Van Iersel MM, Van Schilt MA, Benes NE, Keurentjes JTF (2010) Controlled methyl chloride synthesis at mild conditions using ultrasound irradiation. Ultrason Sonochem 17:315–317. https://doi.org/10.1016/j.ultsonch.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  21. Zbancioc G, Mangalagiu II, Moldoveanu C (2015) Ultrasound assisted synthesis of imidazolium salts: an efficient way to ionic liquids. Ultrason Sonochem 23:376–384. https://doi.org/10.1016/j.ultsonch.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  22. Ambedkar B (2012) Ultrasonic coal-wash for de-ashing and de-sulfurization: experimental investigation and mechanistic modeling. Springer, Berlin, Heidellberg

    Book  Google Scholar 

  23. Mohtadizadeh F, Zohuriaan-Mehr MJ (2013) Highly accelerated synthesis of epoxy-acrylate resin. J Polym Mater 30:461–469

    CAS  Google Scholar 

  24. Çanak TÇ, Kaya K, Serhatli IE (2014) Boron containing UV-curable epoxy acrylate coatings. Prog Org Coat 77:1911–1918. https://doi.org/10.1016/j.porgcoat.2014.06.021

    Article  CAS  Google Scholar 

  25. Chattopadhyay DK, Panda SS, Raju KVSN (2005) Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Prog Org Coat 54:10–19. https://doi.org/10.1016/j.porgcoat.2004.12.007

    Article  CAS  Google Scholar 

  26. Dehghan A, Zohuriaan-Mehr MJ, Salimi A (2017) Rapid preparation of epoxy acrylate-clay nanocomposite: simultaneous acrylation/nanoclay dispersion under ultrasonication. Prog Org Coat 108:44–50. https://doi.org/10.1016/j.porgcoat.2017.04.012

    Article  CAS  Google Scholar 

  27. Wang YY, Hsieh TE (2007) Preparation of UV-curable intercalated/exfoliated epoxide/acrylateclays nanocomposite resins. J Mater Sci 42:4451–4460. https://doi.org/10.1007/s10853-006-0623-5

    Article  CAS  Google Scholar 

  28. Vallo CI, Schroeder WF (2005) Properties of acrylic bone cements formulated with bis-GMA. J Biomed Mater Res Part B Appl Biomater 74:676–685. https://doi.org/10.1002/jbm.b.30211

    Article  CAS  PubMed  Google Scholar 

  29. Uhl FM, Webster DC, Davuluri SP, Wong SC (2006) UV curable epoxy acrylate-clay nanocomposites. Eur Polym J 42:2596–2605. https://doi.org/10.1016/j.eurpolymj.2006.06.016

    Article  CAS  Google Scholar 

  30. Peila R, Malucelli G, Priola A (2009) Preparation and characterization of UV-cured acrylic nanocomposites based on modified organophilic montmorillonites. J Therm Anal Calorim 97:839–844. https://doi.org/10.1007/s10973-009-0278-y

    Article  CAS  Google Scholar 

  31. Zang Y, Xu W, Liu G, Qiu D, Su S (2009) Preparation of ultraviolet-cured bisphenol A epoxy diacrylate/montmorillonite nanocomposites with a bifunctional, reactive, organically modified montmorillonite as the only initiator via in situ polymerization. J Appl Polym Sci 111:99–100. https://doi.org/10.1002/app.29134

    Article  CAS  Google Scholar 

  32. Nkeuwa WN, Riedl B, Landry V (2014) UV-cured clay/based nanocomposite topcoats for wood furniture. Part II: dynamic viscoelastic behavior and effect of relative humidity on the mechanical properties. Prog Org Coat 77:12–23. https://doi.org/10.1016/j.porgcoat.2013.04.018

    Article  CAS  Google Scholar 

  33. Nkeuwa WN, Riedl B, Landry V (2014) UV-cured clay/based nanocomposite topcoats for wood furniture: Part I: morphological study, water vapor transmission rate and optical clarity. Prog Org Coat 77:1–11. https://doi.org/10.1016/j.porgcoat.2013.03.021

    Article  CAS  Google Scholar 

  34. Khoshkish M, Bouhendi H, Vafayan M (2014) Modification of bifunctional epoxy resin using CO2 fixation process and nanoclay. Mater Chem Phys 147:382–389. https://doi.org/10.1016/j.matchemphys.2014.04.004

    Article  CAS  Google Scholar 

  35. Ma J, Xu J, Ren J-H et al (2003) A new approach to polymer/montmorillonite nanocomposites. Polymer 44:4619–4624. https://doi.org/10.1016/S0032-3861(03)00362-8

    Article  CAS  Google Scholar 

  36. Inceoglu F, Dalgicdir C, Menceloglu YZ (2009) Effect of organoclay on the physical properties of UV-curable coatings. ACS Symp Ser 1008:255–273. https://doi.org/10.1021/bk-2009-1008.ch013

    Article  CAS  Google Scholar 

  37. Bittmann B, Haupert F, Schlarb AK (2011) Preparation of TiO2/epoxy nanocomposites by ultrasonic dispersion and their structure property relationship. Ultrason Sonochem 18:120–126. https://doi.org/10.1016/j.ultsonch.2010.03.011

    Article  CAS  PubMed  Google Scholar 

  38. Xie W, Gao Z, Liu K et al (2001) Thermal characterization of organically modified montmorillonite. Thermochim Acta 368:0–11

    Google Scholar 

  39. Xie W, Gao Z, Pan WP et al (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater 13:2979–2990. https://doi.org/10.1021/cm010305s

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, A., Salimi, A. & Zohuriaan-Mehr, M.J. The ultrasonic-assisted synthesis of tetrafunctional acrylated epoxy clay nanocomposite. Polym. Bull. 76, 5197–5211 (2019). https://doi.org/10.1007/s00289-018-2647-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2647-9

Keywords

Navigation