Skip to main content

Advertisement

Log in

A facile method to fabricate an antimicrobial coating based on poly(1-vinyl-3-allylimidazolium iodide) (PAVI) and poly(ethylene glycol) dimethyl acrylate (PEGDMA)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Biomedical device-related infections have been a great concern over the past decades. In this work, cationic macromolecules poly(1-vinyl-3-allylimidazolium iodide) (PAVI) with antibactericidal ability were prepared and grafted on nose clips by surface-initiated polymerization via plasma/autoclaving method. The precursor poly(1-vinylimidazole) was synthesized by surface-initiated polymerization and then quaternarized to form polymeric quaternary ammonia salts which have been commonly used as bactericidal materials. We first synthesized a series of different formulations of cationic PAVI and hydrophilic poly(ethylene glycol) dimethyl acrylate graftings onto nose clips by thermal-initiating polymerization with covalent bonds for antimicrobial surface modification. Antibacterial test results showed that the cationic–hydrophilic coatings exhibited excellent antibacterial behaviors for multidrug-resistant bacteria such as vancomycin-resistant Enterococcus and methicillin-resistant Staphylococcus aureus. The in vitro log reduction value for could reach 6.0 and 8.6, respectively, and the in vivo log reduction value could reach 1.3 and 2.0, respectively. In vitro cytotoxicity indicated that PAVI coatings were non-leachable and exhibited no toxicity toward mammal cells. This rationally designed polycationic antimicrobial coating displayed great potential application in combating implant-associated infections on biomedical devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grainger DW, van der Mei HC, Jutte PC, van den Dungen J, Schultz MJ, van der Laan B, Zaat SAJ, Busscher HJ (2013) Critical factors in the translation of improved antimicrobial strategies for medical implants and devices. Biomaterials 34(37):9237–9243. https://doi.org/10.1016/j.biomaterials.2013.08.043

    Article  CAS  PubMed  Google Scholar 

  2. Darouiche RO (2004) Current concepts—treatment of infections associated with surgical implants. N Engl J Med 350(14):1422–1429. https://doi.org/10.1056/NEJMra035415

    Article  CAS  PubMed  Google Scholar 

  3. Grundmann H, Aires-De-Sousa M, Boyce J, Tiemersma E (2006) Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368(9538):874–885. https://doi.org/10.1016/s0140-6736(06)68853-3

    Article  PubMed  Google Scholar 

  4. Eriksen KR (1961) “Celbenin”-resistant staphylococci. Ugeskr Laeger 123:384–386

    CAS  PubMed  Google Scholar 

  5. Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27(11):2331–2339. https://doi.org/10.1016/j.biomaterials.2005.11.044

    Article  CAS  PubMed  Google Scholar 

  6. Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35(9):780–789. https://doi.org/10.1039/b515219b

    Article  CAS  PubMed  Google Scholar 

  7. Smith AL (2011) Use of a systematic review to inform the infection risk for biomedical engineers and technicians servicing biomedical devices. Australas Phys Eng Sci Med 34(4):431–440. https://doi.org/10.1007/s13246-011-0103-3

    Article  PubMed  Google Scholar 

  8. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG (2004) Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 25(18):4135–4148. https://doi.org/10.1016/j.biomaterials.2003.11.033

    Article  CAS  PubMed  Google Scholar 

  9. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–122. https://doi.org/10.1038/nrd1008

    Article  CAS  PubMed  Google Scholar 

  10. Cecius M, Jerome C (2011) A fully aqueous sustainable process for strongly adhering antimicrobial coatings on stainless steel. Prog Org Coat 70(4):220–223. https://doi.org/10.1016/j.porgcoat.2010.09.025

    Article  CAS  Google Scholar 

  11. Guyomard A, De E, Jouenne T, Malandain JJ, Muller G, Glinel K (2008) Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv Funct Mater 18(5):758–765. https://doi.org/10.1002/adfm.200700793

    Article  CAS  Google Scholar 

  12. Lichter JA, Rubner MF (2009) Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir 25(13):7686–7694. https://doi.org/10.1021/la900349c

    Article  CAS  PubMed  Google Scholar 

  13. Pan YF, Xiao HN (2011) Rendering Rayon fibres antimicrobial and thermal-responsive via layer-by-layer self-assembly of functional polymers. In: Cao Z, He YH, Sun L, Cao XQ (eds) Application of chemical engineering. Advanced Materials Research, Pts 1–3, vol 236–238. Trans Tech Publications Ltd, Durnten-Zurich, pp 1103–1106. https://doi.org/10.4028/www.scientific.net/AMR.236-238.1103

  14. Tiller JC, Lee SB, Lewis K, Klibanov AM (2002) Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng 79(4):465–471. https://doi.org/10.1002/bit.10299

    Article  CAS  PubMed  Google Scholar 

  15. Bieser AM, Thomann Y, Tiller JC (2011) Contact-active antimicrobial and potentially self-polishing coatings based on cellulose. Macromol Biosci 11(1):111–121. https://doi.org/10.1002/mabi.201000306

    Article  CAS  PubMed  Google Scholar 

  16. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun YJ, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5(3):877–882. https://doi.org/10.1021/bm034352k

    Article  CAS  PubMed  Google Scholar 

  17. Ikeda T, Tazuke S, Suzuki Y (1984) Biologically active polycations, 4. Synthesis and antimicrobial activity of poly(trialkylvinylbenzylammonium chloride)s. Die Makromol Chem 185(5):869–876

    Article  CAS  Google Scholar 

  18. Juergensen L, Busnarda J, Caux PY, Kent R (2015) Fate, behavior, and aquatic toxicity of the fungicide IPBC in the Canadian environment. Environ Toxicol 15(3):201–213

    Article  Google Scholar 

  19. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–718. https://doi.org/10.1002/adma.201001215

    Article  CAS  PubMed  Google Scholar 

  20. Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7(4):1431–1440. https://doi.org/10.1016/j.actbio.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  21. Salwiczek M, Qu Y, Gardiner J, Strugnell RA, Lithgow T, McLean KM, Thissen H (2014) Emerging rules for effective antimicrobial coatings. Trends Biotechnol 32(2):82–90. https://doi.org/10.1016/j.tibtech.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  22. Yatvin J, Gao J, Locklin J (2014) Durable defense: robust and varied attachment of non-leaching poly”-onium” bactericidal coatings to reactive and inert surfaces. Chem Commun 50(67):9433–9442. https://doi.org/10.1039/c4cc02803a

    Article  CAS  Google Scholar 

  23. Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34(34):8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089

    Article  CAS  PubMed  Google Scholar 

  24. Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA (2017) Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem Rev 117(5):4667. https://doi.org/10.1021/acs.chemrev.7b00093

    Article  CAS  PubMed  Google Scholar 

  25. Zhou C, Wu Y, Thappeta KRV, Subramanian JTL, Pranantyo D, Kang ET, Duan HW, Kline K, Chan-Park MB (2017) In vivo anti-biofilm and anti-bacterial non-leachable coating thermally polymerized on cylindrical catheter. ACS Appl Mater Interfaces 9(41):36269–36280. https://doi.org/10.1021/acsami.7b07053

    Article  CAS  PubMed  Google Scholar 

  26. Molling JW, Seezink JW, Teunissen BE, Muijrers-Chen I, Borm PJ (2014) Comparative performance of a panel of commercially available antimicrobial nanocoatings in Europe. Nanotechnol Sci Appl 7:97–104. https://doi.org/10.2147/nsa.s70782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gultekinoglu M, Sarisozen YT, Erdogdu C, Sagiroglu M, Aksoy EA, Oh YJ, Hinterdorfer P, Ulubayram K (2015) Designing of dynamic polyethyleneimine (PEI) brushes on polyurethane (PU) ureteral stents to prevent infections. Acta Biomater 21:44–54. https://doi.org/10.1016/j.actbio.2015.03.037

    Article  CAS  PubMed  Google Scholar 

  28. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175. https://doi.org/10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  29. Su Y, Zhi Z, Gao Q, Xie M, Yu M, Lei B, Li P, Ma PX (2017) Autoclaving-derived surface coating with in vitro and in vivo antimicrobial and antibiofilm efficacies. Adv Healthc Mater. https://doi.org/10.1002/adhm.201601173

    Article  PubMed  Google Scholar 

  30. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We also thank the fund support by Changsha University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Zhou or Jingshi Liang.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Song, H., Zhang, F. et al. A facile method to fabricate an antimicrobial coating based on poly(1-vinyl-3-allylimidazolium iodide) (PAVI) and poly(ethylene glycol) dimethyl acrylate (PEGDMA). Polym. Bull. 76, 5433–5449 (2019). https://doi.org/10.1007/s00289-018-2637-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2637-y

Keywords

Navigation