Skip to main content
Log in

Graft copolymers of carboxymethyl cellulose with N-vinylimidazole: synthesis and application for drug delivery

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Graft copolymers of sodium salt of carboxymethyl cellulose and N-vinylimidazole with different contents of the latter are synthesized by radical polymerization. Polymerization kinetics for all samples is researched by copolymer composition determination by UV spectroscopy, and it was found that it lasted 180 min. Percent of grafting calculated from FTIR data is in the range 31–59%, which correlated with GPC and static light scattering data. Aqueous solutions of the synthesized copolymers are characterized by dynamic light scattering (DLS), transmission electron microscopy, and zeta potential measurement. It was established that macromolecular particles of all synthesized copolymers possess non-spherical shape and negative electrokinetic potential value. The hydrodynamic radii of the polymer coils are 120–152 nm. It was found by DLS that macromolecular coils of all copolymers are stable in 0.15 M NaCl aqueous solution and in the physiological pH range which allows to apply them as vectors for targeted drug delivery. Interaction between paclitaxel (Ptx) and Na-CMC-g-PVI copolymer was studied by UV spectroscopy, FTIR, and TEM. Copolymer and Ptx complex formation proceeds by interaction of imidazole cycles and methylene backbone of Na-CMC-g-PVI copolymer and C=O groups and aromatic rings of Ptx. In vitro release kinetics was also researched in acidic and neutral media at 38 °C. Particularly, full release of paclitaxel is reached after 144 h. Release process of Ptx from copolymer particles is described by Korsmeyer–Peppas kinetic model and limited by molecular diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ζ-potential:

Electrokinetic potential

η :

Shear viscosity

θ :

Scattering angle

λ :

Wavelength

ν :

Wavenumber

τ :

Time

τ fast :

Fast relaxation time

τ slow :

Slow relaxation time

A :

Absorbance

A 2 :

Virial coefficient

A fast :

Portion of scattered light relating in fast mode

A slow :

Portion of scattered light relating in slow mode

AGU:

Anhydrous glucose unit

C :

Concentration

C Ptx,0 :

Concentration of paclitaxel at the start of loading

C Ptx, τ :

Concentration of paclitaxel at the τ moment

C Na-CMC- g-PVI :

Concentration of synthesized copolymer

CMC:

Carboxymethyl cellulose

EE:

Encapsulation efficiency

FG:

Frequency of grafting

K :

Solution optical constant

k 0 :

Zero-order release rate constant

LE:

Loading efficiency

m PVI g :

Mass of grafted PVI calculated from FTIR data

m PVI t :

Theoretical mass of PVI

n :

Diffusional exponent

Na-CMC:

Sodium salt of carboxymethyl cellulose

Na-CMC-g-PVI:

Graft copolymer of CMC and N-vinylimidazole

PG:

Percent of grafting

Ptx:

Paclitaxel

PVI:

Poly-N-vinylimidazole

q :

Wave vector modulus

q 0 :

Initial level of the drug in the media

q τ :

Level of the released drug in time τ

q :

Equilibrium level of the released drug

R θ :

Scattering coefficient at the θ scattering angle

R h :

Hydrodynamic radius

R fasth :

Hydrodynamic radius in fast mode

R slowh :

Hydrodynamic radius in slow mode

R g :

Radius of gyration

R fastg :

Radius of gyration in fast mode

R slowg :

Radius of gyration in slow mode

T :

Absolute temperature

VI:

N-Vinylimidazole

References

  1. Dalmoro A, Barba A, Lamberti M, Mazzeo M (2014) Random l-lactide/ε-caprolactone copolymers as drug delivery materials. J Mater Sci 49:5986–5996. https://doi.org/10.1007/s10853-014-8317-x

    Article  CAS  Google Scholar 

  2. Chernikova E, Sivtsov E (2017) Reversible addition-fragmentation chain-transfer polymerization: fundamentals and use in practice. Polym Sci Ser B 59:117–146. https://doi.org/10.1134/S1560090417020038

    Article  CAS  Google Scholar 

  3. Barba A, Dalmoro A, Lamberti G (2014) Biocompatible nano-micro-particles by solvent evaporation from multiple emulsions technique. J Mater Sci 49:5160–5170. https://doi.org/10.1007/s10853-014-8224-1

    Article  CAS  Google Scholar 

  4. Kirsh YE (1998) Water soluble poly-N-vinylamides: synthesis and physicochemical properties. Wiley, Chichester

    Google Scholar 

  5. Oh J, Drumright R, Siegwart D, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477. https://doi.org/10.1016/j.progpolymsci.2008.01.002

    Article  CAS  Google Scholar 

  6. Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48:5418–5429. https://doi.org/10.1002/anie.200900441

    Article  CAS  Google Scholar 

  7. Wang Y, Nie J, Chang B et al (2013) Poly(N-vinylcaprolactam)-based biodegradable multiresponsive microgels for drug delivery. Biomacromol 14:3034–3046. https://doi.org/10.1021/bm401131w

    Article  CAS  Google Scholar 

  8. Edgar K, Buchanan C, Debenham JS et al (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688. https://doi.org/10.1016/S0079-6700(01)00027-2

    Article  CAS  Google Scholar 

  9. Barbucci R, Leone G, Vecchiullo A (2004) Novel carboxymethylcellulose-based microporous hydrogels suitable for drug delivery. J Biomat Sci Polym Ed 15:607–619. https://doi.org/10.1163/156856204323046870

    Article  CAS  Google Scholar 

  10. Rasoulzadeh M, Namaz H (2017) Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym 168:320–326. https://doi.org/10.1016/j.carbpol.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  11. Abdulkhani A, Sousefi M, Ashori A (2016) Preparation and characterization of sodium carboxymethyl cellulose/silk fibroin/graphene oxide nanocomposite films. Polymer Test 52:218–224. https://doi.org/10.1016/j.polymertesting.2016.03.020

    Article  CAS  Google Scholar 

  12. Shatalov GV, Lavlinskaya MS, Pakhomova OA et al (2016) Copolymers of N-vinylcaprolactam with 1-vinyl- and 1-methacryloyl-3,5-dimethylpyrazole as sorbents of essential α-amino acids in liquid- and solid-phase extraction. Russ J Appl Chem 89:140–146. https://doi.org/10.1134/S1070427216010225

    Article  CAS  Google Scholar 

  13. Kuznetsov VA, Lavlinskaya MS, Ostankova IV et al (2018) Synthesis of N-vinylformamide and 1-vinyl-(1-methacryloyl)-3,5-dimethylpyrazole copolymers and their extraction ability in relation to histidine in water-salt media. Polym Bull 75:1237–1251. https://doi.org/10.1007/s00289-017-2091-2

    Article  CAS  Google Scholar 

  14. Atanase L, Desbrieres J, Riess G (2017) Micellization of synthetic and polysaccharides-based graft copolymers in aqueous media. Prog Polym Scie 73:32–60. https://doi.org/10.1016/j.progpolymsci.2017.06.001

    Article  CAS  Google Scholar 

  15. Bhattacharyya S, Maldas D (1984) Graft copolymerization onto cellulosics. Prog Polym Sci 10:171–270. https://doi.org/10.1016/0079-6700(84)90002-9

    Article  CAS  Google Scholar 

  16. McDowall D, Gupta B, Stannett V (1984) Grafting of vinyl monomers to cellulose by ceric ion initiation. Prog Polym Sci 10:1–50. https://doi.org/10.1016/0079-6700(84)90005-4

    Article  CAS  Google Scholar 

  17. Bhattacharya A, Misra B (2004) Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29:767–814. https://doi.org/10.1016/j.progpolymsci.2004.05.002

    Article  CAS  Google Scholar 

  18. Genç F, Uzun C, Güven O (2016) Quaternized poly(1-vinylimidazole) hydrogel for anion adsorption. Polym Bull 73:179–190. https://doi.org/10.1007/s00289-015-1479-0

    Article  CAS  Google Scholar 

  19. Molina M, Gomez-Anton M, Rivas B et al (2001) Removal of Hg(II) from acid aqueous solutions by poly(N-vinylimidazole) hydrogel. J Appl Polym Sci 79:1467–1475

    Article  CAS  Google Scholar 

  20. Yin Y, Dong Z, Luo Q et al (2012) Biomimetic catalysts designed on macromolecular scaffolds. Prog Polym Sci 11:1476–1509. https://doi.org/10.1016/j.progpolymsci.2012.04.001

    Article  CAS  Google Scholar 

  21. Beletskaya I, Tarasenko E, Khokhlov A et al (2007) Poly(N-vinylimidazole) as efficient and recyclable catalyst for the addition of thiols to michael acceptors in aqueous medium. Russ J Org Chem 43:1733–1736. https://doi.org/10.1134/S1070428007110279

    Article  CAS  Google Scholar 

  22. Barabanova A, Blagodatskikh I, Vyshivannaya O et al (2015) Catalytic properties of diblock copolymers of N-vinylcaprolactam and N-vinylimidazole. Dokl Chem 465:253–256. https://doi.org/10.1134/S0012500815110014

    Article  CAS  Google Scholar 

  23. Bellamy LJ (1958) The infra-red spectra of complex molecules. Methuen & Co., Ltd/Wiley, London/New York

    Google Scholar 

  24. Gupta K, Sahoo S, Khandekar K (2002) Graft copolymerization of ethyl acrylate onto cellulose using ceric ammonium nitrate as initiator in aqueous medium. Biomacromol 3:1087–1094. https://doi.org/10.1021/bm020060s

    Article  CAS  Google Scholar 

  25. Kuznetsov VA, Kushchev PO, Blagodatskikh IV et al (2016) Aqueous dispersions of cross-linked poly-N-vinylcaprolactam stabilized with hydrophobically modified polyacrylamide: synthesis, colloidal stability, and thermosensitive properties. Colloid Polym Sci 294:889–899. https://doi.org/10.1007/s00396-016-3843-5

    Article  CAS  Google Scholar 

  26. Jakubiak-Marcinkowska A, Legan M, Jezierska J (2013) Molecularly imprinted polymeric Cu(II) catalysts with modified active centres mimicking oxidation enzyme. J Polym Res 20:317–328. https://doi.org/10.1007/s10965-013-0317-z

    Article  CAS  Google Scholar 

  27. Özbas Z, Ökahraman B, Öztürk AB (2018) Controlled release profile of 5-fluorouracil loaded P(AAM-co-NVP-co-DEAEMA) microgel prepared via free radical precipitation polymerization. Polym Bull. https://doi.org/10.1007/s00289-017-2202-0

    Article  Google Scholar 

  28. Korsmeyer RW, Gurny R, Doelker EM, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35. https://doi.org/10.1016/0378-5173(83)90064-9

    Article  CAS  Google Scholar 

  29. Xu J, Xu B, Shou D, Xia X, Hu Y (2015) Preparation and evaluation of vancomycin-loaded N-trimethyl chitosan nanoparticles. Polymers 7:1850–1870. https://doi.org/10.3390/polym7091488

    Article  CAS  Google Scholar 

  30. Llabot JM, Manzo RH, Allemandi DA (2004) Drug release from carbomer: carbomer sodium salt matrices with potential use as mucoadhesive drug delivery system. Int J Pharm 276:59–66. https://doi.org/10.1016/j.ijpharm.2004.02.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

FTIR, TEM, UV, zeta potential data were obtained with the use of equipment of Centre of Collective Usage of Scientific Equipment of Voronezh State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav A. Kuznetsov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.A., Sorokin, A.V., Lavlinskaya, M.S. et al. Graft copolymers of carboxymethyl cellulose with N-vinylimidazole: synthesis and application for drug delivery. Polym. Bull. 76, 4929–4949 (2019). https://doi.org/10.1007/s00289-018-2635-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2635-0

Keywords

Navigation