Skip to main content

Advertisement

Log in

Electrochemical and dielectric behavior in poly(vinyl alcohol)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) blend for energy storage applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Herein, dielectric studies of solvent-cast poly(vinyl alcohol) (PVA) with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) freestanding films are conducted in the frequency range of 100 Hz–1 MHz and temperature ranging from 303 to 453 K. An insulator to semiconducting transition is observed for PVA/PEDOT:PSS blend above 413 K. Existence of two types of conduction mechanism, hopping between nearest neighbor at low-temperature region (303–383 K) and free-band conduction at high temperatures (above 413 K) within PVA/PEDOT:PSS films under the influence of applied field, is observed and supported by electric moduli formalisms. An increase in dielectric constant and a significant reduction in \(\tan \delta\) values are observed under high temperature and low frequency with the addition of PEDOT:PSS. Greater than 100% Coulombic efficiency and 82% specific capacitance retention at 5000 cycles are observed for 7.5 vol% PEDOT:PSS in PVA working electrode for supercapacitor. Thus, the fabricated films find potential applications in the field of flexible conventional capacitors and as working electrodes for supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Winter M, Brodd R (2004) Are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270

    Article  CAS  Google Scholar 

  2. Prateek, Thakur VK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317

    Article  CAS  PubMed  Google Scholar 

  3. Sharma V, Wang C, Lorenzini RG, Ma R, Zhu Q, Sinkovits DW et al (2014) Rational design of all organic polymer dielectrics. Nat Commun 5:4845

    Article  CAS  PubMed  Google Scholar 

  4. Belattar J, Graca MPF, Costa LC, Achour ME, Brosseau C (2010) Electric modulus-based analysis of the dielectric relaxation in carbon black loaded polymer composites. J Appl Phys 107:124111

    Article  CAS  Google Scholar 

  5. Brosseau C, Achour ME (2009) Variable-temperature measurements of the dielectric relaxation in carbon black loaded epoxy composites. J Appl Phys 105:124102

    Article  CAS  Google Scholar 

  6. Chakraborty G, Meikap AK, Babu R, Blau WJ (2011) Activation behavior and dielectric relaxation in polyvinyl alcohol and multiwall carbon nanotube composite film. Solid State Commun 151:754–758

    Article  CAS  Google Scholar 

  7. Chakraborty G, Gupta K, Rana D, Meikap AK (2013) Dielectric relaxation in polyvinyl alcohol- polypyrrole-multiwall carbon nanotube composites below room temperature. Adv Nat Sci Nanotechnol 4:025005–025010

    Article  CAS  Google Scholar 

  8. Chen CH, Kine A, Nelson RD, LaRue JC (2015) Impedance spectroscopy study of conducting polymer blends of PEDOT:PSS and PVA. Synth Met 206:106–114

    Article  CAS  Google Scholar 

  9. Sheha EM, Nasr MM, El-Mansy MK (2015) The role of MgBr2 to enhance the ionic conductivity of PVA/PEDOT:PSS polymer composite. J Adv Res 6:563–569

    Article  CAS  PubMed  Google Scholar 

  10. Sheha E, Nasr M, El-Mansy MK (2013) Characterization of poly (vinyl alcohol)/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) polymer blend: structure, optical absorption, electrical and dielectric properties. Phys Scr 88:035701–035709

    Article  CAS  Google Scholar 

  11. Muhulet A, Miculescu F, Voicu SF, Schütt F, Thakur VK, Mishra YK (2018) Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater Today Energy 9:154–186

    Article  Google Scholar 

  12. Mohd Abdah MAA, Zubair NA, Azman NHN, Sulaiman Y (2017) Fabrication of PEDOT coated PVA-GO nanofiber for supercapacitor. Mater Chem Phys 192:161–169

    Article  CAS  Google Scholar 

  13. Hanafy TA (2012) Dielectric relaxation and alternating current conductivity of lanthanum, gadolinium, and erbium-polyvinyl alcohol doped films. J Appl Phys 112:034102

    Article  CAS  PubMed Central  Google Scholar 

  14. Assender HE, Windle AH (1998) Crystallinity in poly(vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer 39:4295–4302

    Article  CAS  Google Scholar 

  15. Van Etten EA, Ximenes ES, Tarasconi LT, Garcia ITS, Forte MMC, Boudinov H (2014) Insulating characteristics of polyvinyl alcohol for integrated electronics. Thin Solid Films 568:111–116

    Article  CAS  Google Scholar 

  16. Mydhili V, Manivannan S (2017) Effect of microstructure on the dielectric properties of poly(vinyl alcohol)–poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) composite films. J Appl Polym Sci. https://doi.org/10.1002/app.45079

    Article  Google Scholar 

  17. Theophile N, Jeong HK (2017) Electrochemical properties of poly(vinyl alcohol) and graphene oxide composite for supercapacitor applications. Chem Phys Lett 669:125–129

    Article  CAS  Google Scholar 

  18. Wang N, Chang PR, Zheng P, Ma X (2014) Graphene–poly(vinyl alcohol) composites: fabrication, adsorption and electrochemical properties. Appl Surf Sci 314:815–821

    Article  CAS  Google Scholar 

  19. Hu R, Zhao J, Jiang R, Zheng J (2017) Preparation of high strain polyaniline/polyvinyl alcohol composite and its application in stretchable supercapacitor. J Mater Sci Mater Electron 28:14568–14574

    Article  CAS  Google Scholar 

  20. Deshmukh K, Ahmad J, Hägg MB (2014) Fabrication and characterization of polymer blends consisting of cationic polyallylamine and anionic polyvinyl alcohol. Ionics 20:957–967

    Article  CAS  Google Scholar 

  21. El-Khodary A, Oraby AH, Abdelnaby MM (2008) Characterization, electrical and magnetic properties of PVA films filled with FeCl3–MnCl2 mixed fillers. J Magn Magn Mater 320:1739–1746

    Article  CAS  Google Scholar 

  22. Dey KK, Kumar P, Yadav RR, Dhara A, Srivastava AK (2014) CuO nanoellipsoids for superior physicochemical response of biodegradable PVA. RSC Adv 4:10123–10132

    Article  CAS  Google Scholar 

  23. Roy AS, Gupta S, Sindhu S, Parveen A, Ramamurthy PC (2013) Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos Part B 47:314–319

    Article  CAS  Google Scholar 

  24. Malathi J, Kumaravadivel M, Brahmanandhan GM, Hema M, Baskaran R, Selvasekarapandian S (2010) Structural, thermal and electrical properties of PVA– LiCF3SO3 polymer electrolyte. J Non-Cryst Solids 356:2277–2281

    Article  CAS  Google Scholar 

  25. Bhargav PB, Mohan VM, Sharma AK, Rao VVRN (2009) Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications. Curr Appl Phys 9:165–171

    Article  Google Scholar 

  26. Anbarasan R, Pandiarajaguru R, Prabhu R, Dhanalakshmi V, Jayalakshmi A, Dhanalakshmi B et al (2010) Synthesis, characterizations and mechanical properties of structurally modified poly(vinyl alcohol). J Appl Polym Sci 117:2059–2068

    Article  CAS  Google Scholar 

  27. Abdelaziz M (2011) Cerium (III) doping effects on optical and thermal properties of PVA films. Phys B 406:1300–1307

    Article  CAS  Google Scholar 

  28. Hemalatha KS, Rukmani K, Suriyamurthy N, Nagabhushana BM (2014) Synthesis, characterization and optical properties of hybrid PVA–ZnO nanocomposite: a composition dependent study. Mater Res Bull 51:438–446

    Article  CAS  Google Scholar 

  29. Gong X, Tang CY, Pan L, Hao Z, Tsui CP (2014) Characterization of poly(vinyl alcohol) (PVA)/ZnO nanocomposites prepared by a one-pot method. Compos Part B 60:144–149

    Article  CAS  Google Scholar 

  30. Wang J, Ye L (2015) Structure and properties of polyvinyl alcohol/polyurethane blends. Compos Part B 69:389–396

    Article  CAS  Google Scholar 

  31. Senthil V, Badapanda T, Kumar SN, Kumar P, Panigrahi S (2012) Relaxation and conduction mechanism of PVA: BYZT polymer composites by impedance spectroscopy. J Polym Res 19:9838–9848

    Article  CAS  Google Scholar 

  32. Abd El-kader FH, Gaafer SA, Mahmoud KH, Mohamed SI, Abd El-kader MFH (2009) Electrical conduction in (polyvinyl Alcohol/glycogen) blend films. Polym Compos 30:214–220

    Article  CAS  Google Scholar 

  33. More S, Dhokne R, Moharil S (2018) Structural properties and temperature dependence dielectric properties of PVA-Al2O3 composite thin films. Polym Bull 75:909–923

    Article  CAS  Google Scholar 

  34. Jonscher AK (1967) Electronic properties of amorphous dielectric films. Thin Solid Films 1:213–234

    Article  CAS  Google Scholar 

  35. Amar NM, Saleh AM, Gould RD (2003) Influence of temperature and frequency on the electrical parameters of thermally evaporated metal-free phthalocyanine H2Pc thin films. Appl Phys A 76:77–82

    Article  CAS  Google Scholar 

  36. Thakur VK, Lin MF, Tan EJ, Lee PS (2012) Green aqueous modification of fluoropolymers for energy storage applications. J Mater Chem 22:5951–5959

    Article  CAS  Google Scholar 

  37. Hassen A, El Sayed AM, Morsi WM, El-Sayed S (2012) Influence of Cr2O3 nanoparticles on the physical properties of polyvinyl alcohol. J Appl Phys 112:093525

    Article  CAS  Google Scholar 

  38. Sharma AK, Ramu C (1991) Dielectric properties of solution grown cellulose acetate thin films. Mater Lett 11:128–132

    Article  CAS  Google Scholar 

  39. Abdel-Baset TA, Hassen A (2016) Dielectric relaxation analysis and Ac conductivity of polyvinyl alcohol/polyacrylonitrile film. Phys B 499:24–28

    Article  CAS  Google Scholar 

  40. Sagar R, Raibagkar RL (2013) Complex impedance and modulus studies of cerium doped barium zirconium titanate solid solution. J Alloys Compd 549:206–212

    Article  CAS  Google Scholar 

  41. Tang R, Jiang C, Qian W, Jian J, Zhang X, Wang H, Yang H (2015) Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci Rep 5:13645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Patil UM, Sohn JS, Kulkarni SB, Lee SC, Park HG, Gurav KV, Kim JH, Jun SC (2014) Enhanced supercapacitive performance of chemically grown cobalt-nickel hydroxides on three-dimensional graphene foam electrodes. ACS Appl Mater Interfaces 6:2450–2458

    Article  CAS  PubMed  Google Scholar 

  43. Liu B, Liu B, Wang Q, Wang X, Xiang Q, Chen D, Shen G (2013) New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. ACS Appl Mater Interfaces 5:10011–10017

    Article  CAS  PubMed  Google Scholar 

  44. Ye S, Feng J, Wu P (2013) Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode. ACS Appl Mater Interfaces 5:7122–7129

    Article  CAS  PubMed  Google Scholar 

  45. Chen J, Song J, Feng X (2017) Facile synthesis of graphene/polyaniline composite hydrogel for high-performance supercapacitor. Polym Bull 74:27–37

    Article  CAS  Google Scholar 

  46. Zhou J, Lian J, Hou L, Zhang J, Gou H, Xia M, Zhao Y, Strobel TA, Tao L, Gao F (2015) Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat Commun 6:8503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. N. V. Giridharan, Dr. M. C. Santhoshkumar and Dr. M. Ashok at Department of Physics, National Institute of Technology, Tiruchirappalli, for extending the dielectric testing, thickness measurement and FT-IR facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Manivannan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 882 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mydhili, V., Manivannan, S. Electrochemical and dielectric behavior in poly(vinyl alcohol)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) blend for energy storage applications. Polym. Bull. 76, 4735–4752 (2019). https://doi.org/10.1007/s00289-018-2630-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2630-5

Keywords

Navigation