Skip to main content

CdS quantum dot nanocomposite hydrogels based on κ-carrageenan and poly (acrylic acid), photocatalytic activity and dye adsorption behavior

Abstract

Novel CdS quantum dot nanocomposite hydrogels (QD-NCH) were synthesized by in situ copolymerization cross-linking method using acrylic acid and κ-carrageenan in mild condition followed by embedding CdS QDs. The structure and morphology of CdS QD-NCH were characterized by FT-IR, SEM, TEM, and TGA/DTG techniques. The optical properties of the CdS QD-NCH were studied by UV–Vis and fluorescence spectroscopy. The CdS QD-NCH was applied for the adsorption of cationic dyes: crystal violet (CV) and malachite green (MG). The influence of experimental condition, e.g., adsorbent dosage, pH, contact time, initial dye concentration, and temperature on the dye adsorption behavior was studied. The adsorption kinetic followed from the pseudo-first-order model. The experimental isotherm data also well fitted with Freundlich and Langmuir isotherm models for the adsorption of CV and MG, respectively.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

References

  1. Mahdavinia GR, Massoudi A, Baghban A, Shokri E (2014) Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. J Environ Chem Eng 2:1578–1587. https://doi.org/10.1016/j.jece.2014.05.020

    Article  CAS  Google Scholar 

  2. Batista RA, Espitia PJP, Quintans JSS, Freitas MM, Cerqueira MA, Teixeira JA, Cardoso JC (2019) Hydrogel as an alternative structure for food packaging systems. Carbohydr Polym 205:106–116. https://doi.org/10.1016/j.carbpol.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  3. Ferreira NN, Ferreira LMB, Cardoso VMO, Boni FI, Souza ALR, Gremião MPD (2018) Recent advances in smart hydrogels for biomedical applications: from self-assembly to functional approaches. Eur Polym J 99:117–133. https://doi.org/10.1016/j.eurpolymj.2017.12.004

    Article  CAS  Google Scholar 

  4. Yetisen AK, Butt H, Volpatti LR, Pavlichenko I, Humar M, Kwok SJJ, Koo H, Kim KS, Naydenova I, Khademhosseini A, Kwang Hahn S, Yun SH (2016) Photonic hydrogel sensors. Biotechnol Adv 34:250–271. https://doi.org/10.1016/j.biotechadv.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  5. Zehhaf A, Benyoucef A, Quijada C, Taleb S, Morallon E (2015) Algerian natural montmorillonites for arsenic(III) removal in aqueous solution. Int J Environ Sci Technol 12(2):595–602. https://doi.org/10.1007/s13762-013-0437-3

    Article  CAS  Google Scholar 

  6. Zehhaf A, Benyoucef A, Berenguer R, Quijada C, Taleb S, Morallon E (2012) Lead ion adsorption from aqueous solutions in modified Algerian Montmorillonites. J Therm Anal Calorim 110:1069–1077. https://doi.org/10.1007/s10973-011-2021-8

    Article  CAS  Google Scholar 

  7. Mekhloufi A, Zehhaf A, Benyoucef A, Quijada C, Morallon E (2013) Removal of 8-quinolinecarboxylic acid pesticide from aqueous solution by adsorption on activated montmorillonites. Environ Monit Assess 185:10365–10375. https://doi.org/10.1007/s10661-013-3338-5

    Article  CAS  PubMed  Google Scholar 

  8. Suhas Gupta VK, Carrott PJM, Singh R, Chaudhary M, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Biores Technol 216:1066–1076. https://doi.org/10.1016/j.biortech.2016.05.106

    Article  CAS  Google Scholar 

  9. Melo CR, Riella HG, Kuhnen NC, Angioletto E, Melo AR, Bernardin AM, Rocha MR, Silva L (2012) Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic. Mater Sci Eng, B 177:345–349. https://doi.org/10.1016/j.mseb.2012.01.015

    Article  CAS  Google Scholar 

  10. Mahinroosta M, Jomeh Farsangi Z, Allahverdi A, Shakoori Z (2018) Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater Today Chem 8:42–55. https://doi.org/10.1016/j.mtchem.2018.02.004

    Article  CAS  Google Scholar 

  11. Bardajee GR, Hooshyar Z (2013) Optical properties of water soluble CdSe quantum dots modified by a novel biopolymer based on sodium alginate. Spectrochim Acta Part A Mol Biomol Spectrosc 114:622–626. https://doi.org/10.1016/j.saa.2013.05.015

    Article  CAS  Google Scholar 

  12. Zhou W, Coleman JJ (2016) Semiconductor quantum dots. Curr Opin Solid State Mater Sci 20(6):352–360. https://doi.org/10.1016/j.cossms.2016.06.006

    Article  CAS  Google Scholar 

  13. Costas-Mora I, Romero V, Lavilla I, Bendicho C (2014) An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis. TrAC Trends Anal Chem 57:64–72. https://doi.org/10.1016/j.trac.2014.02.004

    Article  CAS  Google Scholar 

  14. Shen LM, Liu J (2016) New development in carbon quantum dots technical applications. Talanta 156–157:245–256. https://doi.org/10.1016/j.talanta.2016.05.028

    Article  CAS  PubMed  Google Scholar 

  15. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28(31):4717–4732. https://doi.org/10.1016/j.biomaterials.2007.07.014

    Article  CAS  Google Scholar 

  16. Bera D, Qian L, Tseng T-K, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Materials 3(4):2260–2345. https://doi.org/10.3390/ma3042260

    Article  CAS  PubMed Central  Google Scholar 

  17. Loef R, Houtepen AJ, Talgorn E, Schoonman J, Goossens A (2009) Study of electronic defects in CdSe quantum dots and their involvement in quantum dot solar cells. Nano Lett 9(2):856–859. https://doi.org/10.1021/nl803738q

    Article  CAS  PubMed  Google Scholar 

  18. Sun H, Wu L, Wei W, Qu X (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16(11):433–442. https://doi.org/10.1016/j.mattod.2013.10.020

    Article  CAS  Google Scholar 

  19. Wu ZL, Gao MX, Wang TT, Wan XY, Zheng LL, Huang CZ (2014) A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale 6(7):3868–3874. https://doi.org/10.1039/c3nr06353d

    Article  CAS  PubMed  Google Scholar 

  20. Samia AC, Dayal S, Burda C (2006) Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem Photobiol 82(3):617–625. https://doi.org/10.1562/2005-05-11-IR-525

    Article  CAS  PubMed  Google Scholar 

  21. Ghaderi S, Ramesh B, Seifalian AM (2011) Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review. J Drug Target 19(7):475–486. https://doi.org/10.3109/1061186X.2010.526227

    Article  CAS  PubMed  Google Scholar 

  22. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13(1):40–46. https://doi.org/10.1016/s0958-1669(02)00282-3

    Article  CAS  PubMed  Google Scholar 

  23. Albero J, Clifford JN, Palomares E (2014) Quantum dot based molecular solar cells. Coord Chem Rev 263–264:53–64. https://doi.org/10.1016/j.ccr.2013.07.005

    Article  CAS  Google Scholar 

  24. Foubert A, Beloglazova NV, Rajkovic A, Sas B, Madder A, Goryacheva IY, De Saeger S (2016) Bioconjugation of quantum dots: review and impact on future application. TrAC Trends Anal Chem 83:31–48. https://doi.org/10.1016/j.trac.2016.07.008

    Article  CAS  Google Scholar 

  25. Aguilera-Sigalat J, Bradshaw D (2016) Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites. Coord Chem Rev 307:267–291. https://doi.org/10.1016/j.ccr.2015.08.004

    Article  CAS  Google Scholar 

  26. Shamsipur M, Rajabi HR (2014) Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: effect of ferric ion doping. Spectrochim Acta Part A Mol Biomol Spectrosc 122:260–267. https://doi.org/10.1016/j.saa.2013.11.064

    Article  CAS  Google Scholar 

  27. Rajabi HR, Khani O, Shamsipur M, Vatanpour V (2013) High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. J Hazard Mater 250–251:370–378. https://doi.org/10.1016/j.jhazmat.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  28. Ding D, Lan W, Yang Z, Zhao X, Chen Y, Wang J, Zhang X, Zhang Y, Su Q, Xie E (2016) A simple method for preparing ZnO foam/carbon quantum dots nanocomposite and their photocatalytic applications. Mater Sci Semicond Process 47:25–31. https://doi.org/10.1016/j.mssp.2016.02.004

    Article  CAS  Google Scholar 

  29. Zhao D, Yang C-F (2016) Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renew Sustain Energy Rev 54:1048–1059. https://doi.org/10.1016/j.rser.2015.10.100

    Article  CAS  Google Scholar 

  30. Kim HS, Yoon KB (2014) Preparation and characterization of CdS and PbS quantum dots in zeolite Y and their applications for nonlinear optical materials and solar cell. Coord Chem Rev 263–264:239–256. https://doi.org/10.1016/j.ccr.2013.12.001

    Article  CAS  Google Scholar 

  31. Rauf IA, Rezai P (2017) A review of materials selection for optimized efficiency in quantum dot sensitized solar cells: a simplified approach to reviewing literature data. Renew Sustain Energy Rev 73:408–422. https://doi.org/10.1016/j.rser.2017.01.137

    Article  CAS  Google Scholar 

  32. Zhang N, Zhang L, Ruan YF, Zhao WW, Xu JJ, Chen HY (2017) Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosens Bioelectron 94:207–218. https://doi.org/10.1016/j.bios.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  33. Zhou H, Liu J, Zhang S (2015) Quantum dot-based photoelectric conversion for biosensing applications. TrAC Trends Anal Chem 67:56–73. https://doi.org/10.1016/j.trac.2014.12.007

    Article  CAS  Google Scholar 

  34. Wang R, Han M, Zhao Q, Ren Z, Xu C, Hu N, Ning H, Song S, Lee J-M (2017) Construction of 3D CoO quantum dots/graphene hydrogels as binder-free electrodes for ultra-high rate energy storage applications. Electrochim Acta 243:152–161. https://doi.org/10.1016/j.electacta.2017.05.042

    Article  CAS  Google Scholar 

  35. Ruiz-Palomero C, Soriano ML, Benítez-Martínez S, Valcárcel M (2017) Photoluminescent sensing hydrogel platform based on the combination of nanocellulose and S, N-codoped graphene quantum dots. Sens Actuat B Chem 245:946–953. https://doi.org/10.1016/j.snb.2017.02.006

    Article  CAS  Google Scholar 

  36. Ruiz-Palomero C, Benítez-Martínez S, Soriano ML, Valcárcel M (2017) Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase. Anal Chim Acta 974:93–99. https://doi.org/10.1016/j.aca.2017.04.018

    Article  CAS  PubMed  Google Scholar 

  37. Cayuela A, Soriano ML, Kennedy SR, Steed JW, Valcarcel M (2016) Fluorescent carbon quantum dot hydrogels for direct determination of silver ions. Talanta 151:100–105. https://doi.org/10.1016/j.talanta.2016.01.029

    Article  CAS  PubMed  Google Scholar 

  38. Wang Z, Jia J, Zhu M, Li X, Liu J, Wang Y, Zhong H (2016) Double network hydrogel embedded with quantum dots: enhanced visual performance for holographic 3D display. Synth Met 222:132–136. https://doi.org/10.1016/j.synthmet.2016.05.001

    Article  CAS  Google Scholar 

  39. Zhang X, Ding S, Cao S, Zhu A, Shi G (2016) Functional surface engineering of quantum dot hydrogels for selective fluorescence imaging of extracellular lactate release. Biosens Bioelectron 80:315–322. https://doi.org/10.1016/j.bios.2016.01.083

    Article  CAS  PubMed  Google Scholar 

  40. Sahiner N, Sel K, Meral K, Onganer Y, Butun S, Ozay O, Silan C (2011) Hydrogel templated CdS quantum dots synthesis and their characterization. Colloids Surf A 389(1–3):6–11. https://doi.org/10.1016/j.colsurfa.2011.09.006

    Article  CAS  Google Scholar 

  41. Jiang R, Zhu H, Yao J, Fu Y, Guan Y (2012) Chitosan hydrogel films as a template for mild biosynthesis of CdS quantum dots with highly efficient photocatalytic activity. Appl Surf Sci 258(8):3513–3518. https://doi.org/10.1016/j.apsusc.2011.11.105

    Article  CAS  Google Scholar 

  42. Bardajee GR, Hooshyar Z (2011) Synthesis and fluorescent properties investigation of CdSe quantum dots embedded in a biopolymer based on poly((2-dimethylaminoethyl) methacrylate) grafted onto κ-Carrageenan. Colloids Surf A 387(1–3):92–98. https://doi.org/10.1016/j.colsurfa.2011.07.036

    Article  CAS  Google Scholar 

  43. Hosseinzadeh H, Bahador N (2017) Novel CdS quantum dots templated hydrogel nanocomposites: synthesis, characterization, swelling and dye adsorption properties. J Mol Liq 240:630–641. https://doi.org/10.1016/j.molliq.2017.05.129

    Article  CAS  Google Scholar 

  44. Pourjavadi A, Ghasemzadeh H (2007) Carrageenan-g-poly(acrylamide)/poly(vinylsulfonic acid, sodium salt) as a novel semi-IPN hydrogel: synthesis, characterization, and swelling behavior. Polym Eng Sci 47(9):1388–1395. https://doi.org/10.1002/pen.20829

    Article  CAS  Google Scholar 

  45. Pourjavadi A, Ghasemzadeh H, Mojahedi F (2009) Swelling properties of CMC-g-poly (AAm-co-AMPS) superabsorbent hydrogel. J Appl Polym Sci 113(6):3442–3449. https://doi.org/10.1002/app.30094

    Article  CAS  Google Scholar 

  46. Wang Q, Gao Z (2016) A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers. J Mech Phys Solids 94:127–147. https://doi.org/10.1016/j.jmps.2016.04.011

    Article  CAS  Google Scholar 

  47. Appel EA, Tibbitt M, Webber MJ, Mattix BA, Veiseh O, Langer R (2015) Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nat Commun. https://doi.org/10.1038/ncomms7295

    Article  PubMed  PubMed Central  Google Scholar 

  48. Song Y, Li N, Chen D, Xu Q, Li H, He J, Lu J (2018) 3D ordered MoP inverse opals deposited with CdS quantum dots for enhanced visible light photocatalytic activity. Appl Catal B 238:255–262. https://doi.org/10.1016/j.apcatb.2018.07.010

    Article  CAS  Google Scholar 

  49. Iñarritu I, Torres E, Topete A, Campos-Terán J (2017) Immobilization effects on the photocatalytic activity of CdS quantum Dots-Horseradish peroxidase hybrid nanomaterials. J Colloid Interface Sci 506:36–45. https://doi.org/10.1016/j.jcis.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  50. Samadi-Maybodi A, Sadeghi-Maleki MR (2016) In-situ synthesis of high stable CdS quantum dots and their application for photocatalytic degradation of dyes. Spectrochim Acta Part A Mol Biomol Spectrosc 152:156–164. https://doi.org/10.1016/j.saa.2015.07.052

    Article  CAS  Google Scholar 

  51. Hiragond CB, Khanna PK, More PV (2018) Probing the real-time photocatalytic activity of CdS QDs sensitized conducting polymers: featured PTh, PPy and PANI. Vacuum 155:159–168. https://doi.org/10.1016/j.vacuum.2018.06.009

    Article  CAS  Google Scholar 

  52. Li S (2010) Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylose. Biores Technol 101(7):2197–2202. https://doi.org/10.1016/j.biortech.2009.11.044

    Article  CAS  Google Scholar 

  53. Al-Rashdi B, Tizaoui C, Hilal N (2012) Copper removal from aqueous solutions using nano-scale diboron trioxide/titanium dioxide (B2O3/TiO2) adsorbent. Chem Eng J 183:294–302. https://doi.org/10.1016/j.cej.2011.12.082

    Article  CAS  Google Scholar 

  54. Largitte L, Pasquier R (2016) A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des 109:495–504. https://doi.org/10.1016/j.cherd.2016.02.006

    Article  CAS  Google Scholar 

  55. Panic VV, Velickovic SJ (2014) Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: kinetics, equilibrium study and image analysis. Sep Purif Technol 122:384–394. https://doi.org/10.1016/j.seppur.2013.11.025

    Article  CAS  Google Scholar 

  56. Patel YN, Patel MP (2013) Adsorption of azo dyes from water by new poly (3-acrylamidopropyl)-trimethylammonium chloride-co-N, N-dimethylacrylamide superabsorbent hydrogel—equilibrium and kinetic studies. J Environ Chem Eng 1(4):1368–1374. https://doi.org/10.1016/j.jece.2013.09.024

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ghasemzadeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dargahi, M., Ghasemzadeh, H. & Torkaman, A. CdS quantum dot nanocomposite hydrogels based on κ-carrageenan and poly (acrylic acid), photocatalytic activity and dye adsorption behavior. Polym. Bull. 76, 5039–5058 (2019). https://doi.org/10.1007/s00289-018-2628-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2628-z

Keywords

  • Quantum dot
  • Nanocomposite hydrogel
  • κ-Carrageenan
  • Dye adsorption
  • Photocatalytic activity