Skip to main content
Log in

Application of novel hydrophobically modified polybetaines based on alkylaminocrotonates and methacrylic acid as pour point depressants and ASP flooding agent

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of hydrophobically modified polymeric betaines (HMPB) were synthesized from alkylaminocrotonates and methacrylic acid, analyzed by methods of GPC, potentiometric titration and DSC and applied as pour point depressants (PPD) to high paraffinic crude oils of Western Kazakhstan. The efficiency of paraffin inhibition with the help of HMPB was evaluated in static and dynamic conditions. The physicochemical properties of the Mangyshlak oil and the Buzachi–Mangyshlak oil mixture (67:33 vol%) were determined. Paraffins were found to form gelled networks in the Mangyshlak oil and Buzachi–Mangyshlak oil mixture within the fractions of hydrocarbons with lengths of C12–C17 and C13–C16. The results of testing the HMPB as PPD in the model tank and oil pipeline showed that, at a concentration of polymeric additives of 500 ppm and at an injection temperature of 60 °C, the quantity of precipitated asphaltene–resin–paraffin depositions was significantly reduced. The efficiency of HMPB bearing C16H33 groups was tested as a prototype alkaline–surfactant–polymer flooding agent on the heavy oil of the Karazhanbas oilfield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bekturov EA, Bakauova ZK (1986) Synthetic water-soluble polymers in solution. Huthig & Wepf Verlag, Heidelberg

    Google Scholar 

  2. Nakaya T, Li YJ (1999) Phospholipid polymers. Prog Polym Sci 24:143–181

    Article  CAS  Google Scholar 

  3. Oishi T, Yoshimura Y, Yamasaki H, Onimura K (2001) Synthesis and polymerization of methacrylate bearing a phosphorylcholine, analogous moiety. Polym Bull 47:121–126

    Article  CAS  Google Scholar 

  4. Kudaibergenov SE (2002) Polyampholytes: synthesis, characterization and application. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  5. Anton P, Köberle P, Laschewsky A (1993) Recent developments in the field of micellar polymers. Makromol Chem 194:1–27

    Article  CAS  Google Scholar 

  6. KudaibergenovS Jaeger W, Laschewsky A (2006) Polymeric betaines: synthesis, characterization and application. Adv Polym Sci 201:157–224

    Article  CAS  Google Scholar 

  7. McCormick CL, Kirkland SE, York AW (2006) Synthetic routes to stimuli-responsive micelles, vesicles, and surfaces via controlled/living radical polymerization. J Macromol Sci 46:421–443

    Article  CAS  Google Scholar 

  8. Johnson KM, Fevola J, McCormick CL (2004) Hydrophobically-modified acrylamide-based polybetaines. J Appl Polym Sci 92:647–671

    Article  CAS  Google Scholar 

  9. Che YJ, Tan Y, Cao J, Xin H, Xu GY (2011) Synthesis and properties of hydrophobically modified acrylamide-based polysulfobetaines. Polym Bull 66:17–35

    Article  CAS  Google Scholar 

  10. Chen H, Wang ZM, Ye ZhB, Han LJ (2014) The solution behavior of hydrophobically associating zwitterionic polymer in salt water. J Appl Polym Sci 131:39707

    Google Scholar 

  11. Sitnikova T, Rakhnyanskaya A, Yaroslavova E, Melik-Nubarov N, Yaroslavov A (2013) Physicochemical and biological properties of polyampholytes: quaternized derivatives of poly(4-vinylpyridine). Polym Sci Ser A 55:163–170

    Article  CAS  Google Scholar 

  12. Kudaibergenov S, Koetz J, Nuraje N. (2018) Nanostructured hydrophobic polyampholytes: self-assembly, stimuli-sensitivity and application. Adv Compos Hybrid Mater. http://doi.org/10.1007/s42114-018-0059-9

  13. Atta AM, El-Ghazawy RA, Morsy FA, Hebishy AM, Elmorsy A (2015) Adsorption of polymeric additives based on vinyl acetate copolymers as wax dispersant and its relevance to polymer crystallization mechanisms. J Chem. http://dx.doi.org/10.1155/2015/683109

  14. Wu Y, Ni G, Yang F, Li C, Dong G (2012) Modified maleic anhydride co-polymers as pour-point depressants and their effects on waxy crude oil rheology. Energy Fuels 26:995–1001

    Article  CAS  Google Scholar 

  15. Marie E, Chevalier Y, Eydoux F, Germanaud L, Flores P (2005) Control of n-alkanes crystallization by ethylene–vinyl acetate copolymers. J Colloid Interface Sci 290(2):406–412

    Article  CAS  PubMed  Google Scholar 

  16. Ashbaugh HS, Guo XH, Schwahn D, Prud’homme RK, Richter D, Fetters LJ (2005) Interaction of paraffin wax gels with ethylene/vinyl acetate co-polymers. Energy Fuels 19(1):138–144

    Article  CAS  Google Scholar 

  17. Taraneh JB, Rahmatollah G, Hassan A, Alireza D (2008) Effect of wax inhibitors on pour point and rheological properties of Iranian waxy crude oil. Fuel Process Technol 89:973–977

    Article  CAS  Google Scholar 

  18. Radulescu A, Schwahn D, Stellbrink J, Kentzinger E, Heiderich M, Richter D, Fetters LJ (2006) Wax crystallization from solution in hierarchical morphology templated by random poly(ethylene-co-butene) self-assemblies. Macromolecules 39:6142–6151

    Article  CAS  Google Scholar 

  19. Ashbaugh HS, Radulescu A, Prud’homme RK, Schwahn D, Richter D, Fetters LJ (2002) Interaction of paraffin wax gels with random crystalline/amorphous hydrocarbon copolymers. Macromolecules 35:7044–7053

    Article  CAS  Google Scholar 

  20. Ding XZ, Qi GR, Yang SL (1999) Thermodynamic analysis for the interaction of polyacrylate with wax in heptane. Polymer 40(14):4139–4142

    Article  CAS  Google Scholar 

  21. Al-Sabagh AM, El-Din MRN, Morsi RE, Elsabee MZ (2009) Styrene-maleic anhydride copolymer esters as flow improvers of waxy crude oil. J Petrol Sci Eng 65:139–146

    Article  CAS  Google Scholar 

  22. Borthakur A, Laskar C, Mazumdar R (1995) Synthesis and evaluation of alkyl fumarate vinyl-acetate copolymers in combination with alkyl acrylates as flow improvers for borholla crude-oil. J Chem Technol Biotechnol 62:75–80

    Article  CAS  Google Scholar 

  23. Deshmukh S, Bharambe DP (2008) Synthesis of polymeric pour point depressants for Nada crude oil (Gujarat, India) and its impact on oil rheology. Fuel Process Technol 89:227–233

    Article  CAS  Google Scholar 

  24. Deshmukh S, Bharambe D (2009) Evaluation of effect of polymeric pour point depressant additives on indian waxy crude oil. Petrol Sci Technol 27:2097–2108

    Article  CAS  Google Scholar 

  25. Jun X, Huiqin Q, Shili X, Li L, Xuhong G (2011) Synthesis of poly(maleic acid alkylamide-co-α-olefin-co-styrene) co-polymers and their effect on the yield stress and morphology of waxy gels with asphaltenes. Energy Fuels 25:573–579

    Article  CAS  Google Scholar 

  26. El-Ghazawy RA, Farag RK (2010) Synthesis and characterization of novel pour point depressants based on maleic anhydride-alkyl acrylates terpolymers. J Appl Polym Sci 115:72–78

    Article  CAS  Google Scholar 

  27. Cao K, Wei X, Li B, Zhang J, Yao Z (2013) Study of the influence of imidization degree of poly(styrene-co-octadecylmaleimide) as waxy crude oil flow improvers. Energy Fuels 27:640–645

    Article  CAS  Google Scholar 

  28. Rasha AE-Gh, Reem KF (2010) Synthesis and characterization of novel pour point depressants based on maleic anhydride-alkyl acrylates terpolymers. J Appl Polym Sci 115:72–78

    Article  CAS  Google Scholar 

  29. Holder GA, Winkler J (1965) Crystal-growth poisoning of n-paraffin wax by polymeric additives and its relevance to polymer crystallization mechanisms. Nature 207(4998):719–721

    Article  CAS  Google Scholar 

  30. Didukh AG, Koizhaiganova RB, Bimendina LA, Kudaibergenov SE (2004) Synthesis and characterization of novel hydrophobically modified polybetaines as pour point depressants. J Appl Polym Sci 92:1042–1048

    Article  CAS  Google Scholar 

  31. Halim N, Ali S, Nadeem MN, Hamdi PA (2011) 142288-MS SPE Conference Paper Society of Petroleum Engineers. https://doi.org/10.2118/142288-MS

  32. Kudaibergenov SE, Bimendina LA, Yashkarova MG (2007) Preparation and characterization of novel polymeric betaines based on aminocrotonates. J Macromol Sci Pure Appl Chem 44:899–913

    Article  CAS  Google Scholar 

  33. Koizhaiganova RB, Kudaibergenov SE, Geckeler KE (2002) A novel class of betaine-type polyampholytes with stimuli-responsive and complexing properties. Macromol Rapid Commun 23:1041–1044

    Article  CAS  Google Scholar 

  34. Shakhvorostov AV, Nurakhmetova ZhA, Tatykhanova GS, Nuraje N, Kudaibergenov SE (2015) Synthesis and characterization of hydrophobically modified polymeric betaines. Bull Kazakh Natl Univ Ser Chem 3(79):11–20

    Google Scholar 

  35. Seliverstova EV, Ibrayev NKh, Shakhvorostov AV, Nuraje N, Kudaibergenov SE (2016) Physicochemical properties of hydrophobically modified polymeric betaines and of their Langmuir–Blodgett films. Macromol Symp 363:36–48

    Article  CAS  Google Scholar 

  36. Shakhvorostov AV, NurakhmetovaZhA Seilkhanov TM, Nuraje N, Kudaibergenov SE (2017) Self-assembly of hydrophobic polybetaine based on (tridecyl)aminocrotonate and methacrylic acid. Polym Sci Ser C 59:74–81

    Article  Google Scholar 

  37. Kudaibergenov S, Nuraje N, AdilovZh, Abilkhairov D, Ibragimov R, Gusenov I, Sagindykov A (2015) Plugging behavior of gellan in porous saline media. J Appl Polym Sci. https://doi.org/10.1002/app.41256

  38. Zhang F, Ouyang J, Feng X, Zhang H, Xu L (2014) Paraffin deposition mechanism and paraffin inhibition technology for high carbon paraffin crude oil from the Kazakhstan PK oilfield. Pet Sci Technol 32:488–496

    Article  CAS  Google Scholar 

  39. Au J (2001) Optimize pour point control to save money. Hydrocarb Process 80:73–75

    Google Scholar 

  40. Kudaibergenov S, Akhmedzhanov TK, Zhappasbayev BZh, Gussenov ISh, Shakhvorostov AV (2015) Laboratory study of ASP flooding for viscous oil. Int J Chem Sci 13(4):2017–2025

    CAS  Google Scholar 

  41. Liu R, Wanfen P, Lili W, Quansheng Ch, Zhihong L, Yu L, Bin L (2015) Solution properties and phase behavior of a combination flooding system consisting of hydrophobically amphoteric polyacrylamide, alkyl polyglycoside and n-alcohol at high salinities. RSC Adv 5:69980–69989

    Article  CAS  Google Scholar 

  42. Negin C, Ali S, Xie Q (2017) Most common surfactants employed in chemical enhanced oil recovery. Petroleum 3:197–211. https://doi.org/10.1016/j.petrlm.2016.11.007

    Article  Google Scholar 

  43. Sheng JJ (2015) Status of surfactant EOR technology. Petroleum 1:97–105. https://doi.org/10.1016/j.petrlm.2015.07.003

    Article  Google Scholar 

  44. Raffa P, Broekhuis AA, Picchioni F (2016) Polymeric surfactants for enhanced oil recovery. J Petrol Sci Eng 145:723–733. https://doi.org/10.1016/j.petrol.2016.07.007

    Article  CAS  Google Scholar 

  45. Cao Y, Li HL (2002) Interfacial activity of a novel family of polymeric surfactants. Eur Polym J 38:1457–1463

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP05131003/2018-2020). N.N. acknowledges the ACSPRF (57095-DN17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarkyt Kudaibergenov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11,262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudaibergenov, S., Shakhvorostov, A., Gussenov, I. et al. Application of novel hydrophobically modified polybetaines based on alkylaminocrotonates and methacrylic acid as pour point depressants and ASP flooding agent. Polym. Bull. 76, 5129–5147 (2019). https://doi.org/10.1007/s00289-018-2626-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2626-1

Keywords

Navigation