Skip to main content

Advertisement

Log in

Mucoadhesive nanofibrous membrane with anti-inflammatory activity

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

For the higher patient compliance in periodontal disease, the drug delivery system should be released with a mucoadhesive membrane in a higher rate to minimize the sink condition in mouth. The herbal compounds have been well known as a branch of therapeutic agents, especially for inflammatory injuries. Herein, carbopol or carbomer was employed to prepare a matrix system containing a therapeutic agent, namely Ziziphus jujuba extract. The corresponding polymer was electrospun with polyacrylonitrile, and the release process was studied in the following. Approximately, 80% of the extract was released after 60 min following the Higuchi model and the anti-inflammation reaction of the extract was confirmed after stimulating inflammation of human umbilical vein endothelial cells by lipopolysaccharide. Also, the mechanical mucoadhesion of prepared scaffold was exposed that approximately 4 N/m2 was required to separate from mucoadhesive substrates. Also, Fourier transform infrared spectroscopy confirmed the presence of cyclic saccharides belonged to Z. jujuba extract. All results have approved that the membrane prepared with carbopol and Z. jujuba extract could be used as a patch for the treatment of periodontal injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Joshi D et al (2016) Advanced drug delivery approaches against periodontitis. Drug Deliv 23(2):363–377

    Article  CAS  PubMed  Google Scholar 

  2. Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL (2010) Regeneration of periodontal tissue: bone replacement grafts. Dent Clin 54(1):55–71

    Google Scholar 

  3. Shue L, Yufeng Z, Mony U (2012) Biomaterials for periodontal regeneration: a review of ceramics and polymers. Biomatter 2(4):271–277

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sculean A, Nikolidakis D, Schwarz F (2008) Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials—biological foundation and preclinical evidence: a systematic review. J Clin Periodontol 35:106–116

    Article  CAS  PubMed  Google Scholar 

  5. Hamedi S et al (2016) Designing mucoadhesive discs containing stem bark extract of Ziziphus jujuba based on Iranian traditional documents. Iran J Basic Med Sci 19(3):330

    PubMed  PubMed Central  Google Scholar 

  6. Shojaei AH (1998) Buccal mucosa as a route for systemic drug delivery: a review. J Pharm Pharm Sci 1(1):15–30

    CAS  PubMed  Google Scholar 

  7. Squier CA, Wertz PW (1993) Permeability and the pathophysiology of oral mucosa. Adv Drug Deliv Rev 12(1–2):13–24

    Article  Google Scholar 

  8. Hearnden V et al (2012) New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv Drug Deliv Rev 64(1):16–28

    Article  CAS  PubMed  Google Scholar 

  9. Boddupalli BM et al (2010) Mucoadhesive drug delivery system: an overview. J Adv Pharm Technol Res 1(4):381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andrews GP, Laverty TP, Jones DS (2009) Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm 71(3):505–518

    Article  CAS  PubMed  Google Scholar 

  11. Singh B, Dhiman A (2016) Design of acacia gum–carbopol–cross-linked-polyvinylimidazole hydrogel wound dressings for antibiotic/anesthetic drug delivery. Ind Eng Chem Res 55(34):9176–9188

    Article  CAS  Google Scholar 

  12. Jones DS et al (2009) Rheological, mechanical and mucoadhesive properties of thermoresponsive, bioadhesive binary mixtures composed of poloxamer 407 and carbopol 974P designed as platforms for implantable drug delivery systems for use in the oral cavity. Int J Pharm 372(1):49–58

    Article  CAS  PubMed  Google Scholar 

  13. Surassmo S et al (2015) Surface modification of PLGA nanoparticles by carbopol to enhance mucoadhesion and cell internalization. Colloids Surf B 130:229–236

    Article  CAS  Google Scholar 

  14. Golchin A, Hosseinzadeh S, Roshangar L (2017) The role of nanomaterials in cell delivery systems. Med Mol Morphol 51:1–12

    Article  CAS  PubMed  Google Scholar 

  15. Dilamian M, Montazer M, Masoumi J (2013) Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylene biguanide) hydrochloride. Carbohydr Polym 94(1):364–371

    Article  CAS  PubMed  Google Scholar 

  16. Okutan N, Terzi P, Altay F (2014) Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids 39:19–26

    Article  CAS  Google Scholar 

  17. Hosseinzadeh S et al (2014) The activation of satellite cells by nanofibrous poly ɛ-caprolacton constructs. J Biomater Appl 28(6):801–812

    Article  CAS  PubMed  Google Scholar 

  18. Hosseinzadeh S et al (2016) Predictive modeling of phenolic compound release from nanofibers of electrospun networks for application in periodontal disease. J Polym Eng 36(5):457–464

    Article  CAS  Google Scholar 

  19. Amin GR (1991) Popular medicinal plants of Iran, vol 1. Iranian Research Institute of Medicinal Plants, Tehran

    Google Scholar 

  20. Azam Khan M (2004) “Aksir Azam”. The Institute for Medical History-Islamic and Complementary Medicine, Tehran University of Medical Sciences, pp 270–275

  21. Mahajan RT, Chopda M (2009) Phyto-pharmacology of Ziziphus jujuba Mill—a plant review. Pharmacogn Rev 3(6):320

    CAS  Google Scholar 

  22. Hamedi S, Shams-Ardakani MR, Sadeghpour O, Amin G, Hajighasemali D, Orafai H (2016) Designing mucoadhesive discs containing stem bark extract of Ziziphus jujuba based on Iranian traditional documents. Iran J Basic Med Sci 19(3):330

    PubMed  PubMed Central  Google Scholar 

  23. Hosseinzadeh S et al (2017) Study of epithelial differentiation and protein expression of keratinocyte-mesenchyme stem cell co-cultivation on electrospun nylon/B. vulgaris extract composite scaffold. Mater Sci Eng C 75:653–662

    Article  CAS  Google Scholar 

  24. Ranjbarvan P et al (2018) Natural compounds for skin tissue engineering by electrospinning of nylon-Beta vulgaris. ASAIO J 64(2):261–269

    Article  CAS  PubMed  Google Scholar 

  25. Brown W, Marques MRC (2013) The United States pharmacopeia/national formulary: its history, organization, and role in harmonization. In: Generic drug product development, CRC Press, pp 330–343

  26. Ghasemi K, Ghasemi Y, Ebrahimzadeh MA (2009) Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak J Pharm Sci 22(3):277–281

    CAS  PubMed  Google Scholar 

  27. Folin O, Ciocalteu V (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem 73(2):627–650

    CAS  Google Scholar 

  28. Kate V, Payghan S (2013) Effect of bioadhesion and permeability on dissolution behavior of piroxicam mucoadhesive fast disintegrating tablet. Inventi Rapid Pharm Tech 2013(2):1–7

    Google Scholar 

  29. Slots J (1986) Rapid identification of important periodontal microorganisms by cultivation. Mol Oral Microbiol 1(1):48–55

    CAS  Google Scholar 

  30. Roy RV et al (2016) Occupancy of human EPCR by protein C induces β-arrestin-2 biased PAR1 signaling by both APC and thrombin. Blood 128(14):1884–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hosseinzadeh S et al (2016) Predictive modeling of phenolic compound release from nanofibers of electrospun networks for application in periodontal disease. J Polym Eng 35:457–464

    Google Scholar 

  32. Hosseinzadeh S et al (2015) Detailed mechanism of aniline nucleation into more conductive nanofibers. Synth Met 209:91–98

    Article  CAS  Google Scholar 

  33. Chen M, Li YF, Besenbacher F (2014) Electrospun nanofibers-mediated on-demand drug release. Adv Healthc Mater 3(11):1721–1732

    Article  CAS  PubMed  Google Scholar 

  34. Vakilian S et al (2018) L. inermis-loaded nanofibrous scaffolds for wound dressing applications. Tissue Cell 51:32–38

    Article  CAS  PubMed  Google Scholar 

  35. Hosseinzadeh S et al (2016) Nanofibrous hydrogel with stable electrical conductivity for biological applications. Polymer 97:205–216

    Article  CAS  Google Scholar 

  36. Brglez Mojzer E et al (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21(7):901

    Article  CAS  PubMed Central  Google Scholar 

  37. Lee B-S et al (2013) New electrospinning nozzle to reduce jet instability and its application to manufacture of multi-layered nanofibers. Sci Rep 4:6758

    Article  Google Scholar 

  38. Dash S et al (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67(3):217–223

    CAS  PubMed  Google Scholar 

  39. Hosseinzadeh S et al (2018) Polyethylenimine: a new differentiation factor to endothelial/cardiac tissue. J Cell Biochem. https://doi.org/10.1002/jcb.27287

    Article  PubMed  Google Scholar 

  40. Jose S et al (2013) Predictive modeling of insulin release profile from cross-linked chitosan microspheres. Eur J Med Chem 60:249–253

    Article  CAS  PubMed  Google Scholar 

  41. Dash S et al (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67(3):217–223

    CAS  PubMed  Google Scholar 

  42. Shoaib MH et al (2006) Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak J Pharm Sci 19(2):119–124

    CAS  PubMed  Google Scholar 

  43. Perioli L et al (2004) Novel mucoadhesive buccal formulation containing metronidazole for the treatment of periodontal disease. J Control Release 95(3):521–533

    Article  CAS  PubMed  Google Scholar 

  44. Perioli L et al (2007) Mucoadhesive bilayered tablets for buccal sustained release of flurbiprofen. AAPS PharmSciTech 8(3):E20–E27

    Article  PubMed Central  Google Scholar 

  45. Galley HF, Webster NR (2004) Physiology of the endothelium. Br J Anaesth 93(1):105–113

    Article  CAS  Google Scholar 

  46. Claesson-Welsh L (2015) Vascular permeability—the essentials. Upsala J Med Sci 120(3):135–143

    Article  PubMed  Google Scholar 

  47. Donnelly LE et al (2004) Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am J Physiol Lung Cell Mol Physiol 287(4):L774–L783

    Article  CAS  PubMed  Google Scholar 

  48. Lee KK, Choi JD (1999) The effects of Areca catechu L. extract on anti-inflammation and anti-melanogenesis. Int J Cosmet Sci 21(4):275–284

    Article  CAS  PubMed  Google Scholar 

  49. Muanda FN, Dicko A, Soulimani R (2010) Assessment of polyphenolic compounds, in vitro antioxidant and anti-inflammation properties of Securidaca longepedunculata root barks. C R Biol 333(9):663–669

    Article  CAS  PubMed  Google Scholar 

  50. Tipoe GL et al (2007) Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovas Haematol Disord Drug Targets 7(2):135–144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simzar Hosseinzadeh or Shokouhsadat Hamedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, S., Hamedi, S., Esmaeili, E. et al. Mucoadhesive nanofibrous membrane with anti-inflammatory activity. Polym. Bull. 76, 4827–4840 (2019). https://doi.org/10.1007/s00289-018-2618-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2618-1

Keywords

Navigation