Skip to main content
Log in

Characterization of maleic anhydride/styrene melt-grafted random copolypropylene and its impact on crystallization and mechanical properties of isotactic polypropylene

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Maleic anhydride/styrene-grafted random copolypropylene (MPP) was prepared by multi-monomer melt grafting. Fourier transform infrared spectroscopy verified that maleic anhydride and styrene were successfully grafted onto the polypropylene random copolymer (PPR) backbones. Dynamic rheological tests indicated the existence of long branched chains on MPP. The influence of grafting degree of maleic anhydride on the crystallization behavior of MPP was investigated by differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscopy. The results showed that the crystallization rate of MPP was higher than that of PPR, and it increased with the increase in grafting degree. The long-chain branched structure could promote heterogeneous nucleation formation of MPP, resulting in the increase in crystallization rate and the decrease in spherulite size. Moreover, the effect of MPP content on crystallization and mechanical properties of isotactic polypropylene (PP)/MPP blends was further investigated. It was found that the interfacial interaction in the blends with 1–10 wt% of MPP was higher than PP/MPP-15% blend. Introducing MPP into PP could induce the formation of β-crystal. Consequently, the incorporation of MPP into PP increased the tensile strength and impact strength and maximum values were obtained for PP/MPP-10% blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Venugopal G, Moore J, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77:34–41

    Article  CAS  Google Scholar 

  2. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462

    Article  CAS  PubMed  Google Scholar 

  3. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364

    Article  CAS  Google Scholar 

  4. Wan LS, Liu ZM, Xu ZK (2009) Surface engineering of macroporous polypropylene membranes. Soft Matter 5:1775–1785

    Article  CAS  Google Scholar 

  5. Yang YF, Wan LS, Xu ZK (2011) Surface engineering of microporous polypropylene membrane for antifouling: a mini-review. J Adhes Sci Technol 25:245–260

    Article  CAS  Google Scholar 

  6. Jin J, Zhang C, Jiang W, Luan S, Yang H, Yin J, Stagnaro P (2012) Melting grafting polypropylene with hydrophilic monomers for improving hemocompatibility. Colloids Surf A 407:141–149

    Article  CAS  Google Scholar 

  7. Saffar A, Carreau PJ, Ajji A, Kamal MR (2014) Development of polypropylene microporous hydrophilic membranes by blending with PP-g-MA and PP-g-AA. J Membr Sci 462:50–61

    Article  CAS  Google Scholar 

  8. Flores-Gallardo SG, Sánchez-Valdes S, De Valle LR (2001) Polypropylene/polypropylene-grafted acrylic acid blends for multilayer films: preparation and characterization. J Appl Polym Sci 79:1497–1505

    Article  CAS  Google Scholar 

  9. Chen HR, Ma WZ, Xia YP, Gu Y, Cao Z, Liu CL, Yang HC, Tao SX, Geng HR, Tao GL, Matsuyama H (2017) Improving amphiphilic polypropylenes by grafting poly (vinylpyrrolidone) and poly (ethylene glycol) methacrylate segments on a polypropylene microporous membrane. Appl Surf Sci 419:259–268

    Article  CAS  Google Scholar 

  10. Sadeghi F, Ajji A, Carreau PJ (2007) Analysis of microporous membranes obtained from polypropylene films by stretching. J Membr Sci 292:62–71

    Article  CAS  Google Scholar 

  11. Sadeghi F, Ajji A, Carreau PJ (2007) Analysis of row nucleated lamellar morphology of polypropylene obtained from the cast film process: effect of melt rheology and process conditions. Polym Eng Sci 47:1170–1178

    Article  CAS  Google Scholar 

  12. Sadeghi F, Ajji A, Carreau PJ (2008) Microporous membranes obtained from polypropylene blends with superior permeability properties. J Polym Sci Part B Polym Phys 46:148–157

    Article  CAS  Google Scholar 

  13. Tabatabaei SH, Carreau PJ, Ajji A (2009) Microporous membranes obtained from PP/HDPE multilayer films by stretching. J Membr Sci 345:148–159

    Article  CAS  Google Scholar 

  14. Li Y, Xie XM, Guo BH (2001) Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene. Polymer 42:3419–3425

    Article  CAS  Google Scholar 

  15. Tabatabaei SH, Carreau PJ, Ajji A (2008) Microporous membranes obtained from polypropylene blend films by stretching. J Membr Sci 325:772–782

    Article  CAS  Google Scholar 

  16. Tabatabaei SH, Carreau PJ, Ajji A (2009) Effect of processing on the crystalline orientation, morphology, and mechanical properties of polypropylene cast films and microporous membrane formation. Polymer 50:4228–4240

    Article  CAS  Google Scholar 

  17. Yu Q, Li JC, Xia HZ, Liu CL, Lin MD (1997) The study of reactive extrusion for grafting of maleic anhydride on polypropylene. J Jiangsu Inst Petrochem Technol 9:20–26

    CAS  Google Scholar 

  18. Han WH, Wu HP, Yin DS, Yu Q (2009) Thermal stability of polypropylene-graft-maleic anhydride. China Plast 23:91–94

    CAS  Google Scholar 

  19. Xu SY, Tang YY, Xu X, Yu Q (2017) Preparation of hydrophilic polypropylene microporous membrane and its application in lithium battery. Polym Mater Sci Eng 33:152–156

    CAS  Google Scholar 

  20. Kamfjord T, Stori A (2001) Selective functionalization of the ethylene rich phase of a heterophasic polypropylene. Polymer 42:2767–2775

    Article  CAS  Google Scholar 

  21. Duan SJ, Wang HY, Liu XW (2012) Microstructure and properties of polypropylene random copolymers. China Synth Resin Plast 29:66–68

    CAS  Google Scholar 

  22. Xie XM, Li Y, Zhang JC, Yang X (2002) Study of melt free radical grafting of maleic anhydride and styrene onto polypropylene and its properties. Acta Polym Sin 1:7–12

    Google Scholar 

  23. Li S, Xiao M, Wei D, Xiao H, Hu F, Zheng A (2009) The melt grafting preparation and rheological characterization of long chain branching polypropylene. Polymer 50:6121–6128

    Article  CAS  Google Scholar 

  24. Borsig E, Van Duin M, Gotsis AD, Picchioni F (2008) Long chain branching on linear polypropylene by solid state reactions. Eur Polym J 44:200–212

    Article  CAS  Google Scholar 

  25. Parent JS, Bodsworth A, Sengupta SS, Kontopoulou M, Chaudhary BI, Poche D, Cousteaux S (2009) Structure–rheology relationships of long-chain branched polypropylene: comparative analysis of acrylic and allylic coagent chemistry. Polymer 50:85–94

    Article  CAS  Google Scholar 

  26. Wood-Adams PM, Dealy JM (2000) Using rheological data to determine the branching level in metallocene polyethylenes. Macromolecules 33:7481–7488

    Article  CAS  Google Scholar 

  27. Van Ruymbeke E, Stéphenne V, Daoust D, Godard P, Keunings R, Bailly C (2005) A sensitive method to detect very low levels of long chain branching from the molar mass distribution and linear viscoelastic response. J Rheol 49:1503–1520

    Article  CAS  Google Scholar 

  28. Bidaux JE, Smith GD, Bernet N, Månson JAE, Hilborn J (1996) Fusion bonding of maleic anhydride grafted polypropylene to polyamide 6 via in situ block copolymer formation at the interface. Polymer 37:1129–1136

    Article  CAS  Google Scholar 

  29. Zhang X, Yin Z, Li L, Yin J (1996) Grafting of glycidyl methacrylate onto ethylene-propylene copolymer: preparation and characterization. J Appl Polym Sci 61:2253–2257

    Article  CAS  Google Scholar 

  30. Yu J, He J (2000) Crystallization kinetics of maleic anhydride grafted polypropylene ionomers. Polymer 41:891–898

    Article  CAS  Google Scholar 

  31. Seo Y, Kim J, Kim KU, Kim YC (2000) Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene. Polymer 41:2639–2646

    Article  CAS  Google Scholar 

  32. Shen W, He P, Yu W, Zhou CX (2014) Effect of mesophase separation on the compatibility of iPP/olefin block copolymer blends. Acta Polym Sin 8:1116–1123

    Google Scholar 

  33. Utracki LA (1991) On the viscosity-concentration dependence of immiscible polymer blends. J Rheol 35:1615–1637

    Article  CAS  Google Scholar 

  34. Nitta KH, Shin YW, Hashiguchi H, Tanimoto S, Terano M (2005) Morphology and mechanical properties in the binary blends of isotactic polypropylene and novel propylene-co-olefin random copolymers with isotactic propylene sequence 1. Ethylene–propylene copolymers. Polymer 46:965–975

    Article  CAS  Google Scholar 

  35. Cho K, Li F, Choi J (1999) Crystallization and melting behavior of polypropylene and maleated polypropylene blends. Polymer 40:1719–1729

    Article  CAS  Google Scholar 

  36. Su ZQ, Dong M, Guo ZX, Yu J (2007) Study of polystyrene and acrylonitrile-styrene copolymer as special β-nucleating agents to induce the crystallization of isotactic polypropylene. Macromolecules 40:4217–4224

    Article  CAS  Google Scholar 

  37. Chen JW, Dai J, Yang JH, Zhang N, Huang T, Wang Y (2013) Enhancing chain segments mobility to improve the fracture toughness of polypropylene. Chin J Polym Sci 31:232–241

    Article  CAS  Google Scholar 

  38. Chen JW, Dai J, Yang JH, Zhang N, Huang T, Wang Y, Zhang CL (2014) Amplified toughening effect of annealing on isotactic polypropylene realized by introducing microvoids. Ind Eng Chem Res 53:4679–4688

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingru Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, J. Characterization of maleic anhydride/styrene melt-grafted random copolypropylene and its impact on crystallization and mechanical properties of isotactic polypropylene. Polym. Bull. 76, 4369–4387 (2019). https://doi.org/10.1007/s00289-018-2609-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2609-2

Keywords

Navigation