Skip to main content

Cellulose fiber-reinforced thermosetting composites: impact of cyanoethyl modification on mechanical, thermal and morphological properties


This study explores the mechanical, thermal and morphological properties of untreated and cyanoethyl-treated kempas wood sawdust cellulose fiber-reinforced unsaturated polyester composites. The fiber loadings of the composites were varied from 0 to 20 wt%, with the increment of 5 wt%. The composites were tested for water absorption, and their FTIR spectroscopy, SEM and TGA results were analyzed. The FTIR results show that the fiber treatment reduces the hydroxyl groups in the cellulose, replacing them with the cyanoethyl groups. The TGA results show that the composites are stable up to 324 °C. SEM images of the treated fiber composites showed that there were no visible gaps between fibers and matrix which indicates a strong interfacial bond. From the mechanical tests, 15 wt% fiber loading composite was strongest. Among all the composites, cyanoethyl cellulose fiber unsaturated polyester composites had the most desirable mechanical and thermal properties, whereas the fiber treatment showed the improvement of interfacial bonding.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12



Cyanoethyl cellulose fiber unsaturated polyester composites


Wood fiber


Wood sawdust


Wood pulp fiber


Unsaturated polymer composites


Unsaturated polyester


Cellulose fiber


Cyanoethyl cellulose fibers


Wood fiber unsaturated polyester composites


Cellulose fiber unsaturated polyester composites


Delignified wood pulp fiber


Alkaline-treated wood pulp fiber


Methyl ethyl ketone peroxide


Wood fiber unsaturated polyester composites


  1. 1.

    Jiang D, Xing L, Liu L, Yan X, Guo J, Zhang X, Zhang Q, Wu Z, Zhao F, Huang Y, Wei S, Guo Z (2014) Interfacially reinforced unsaturated polyester composites by chemically grafting different functional POSS onto carbon fibers. J Mater Chem A 43:18293–18303.

    Article  CAS  Google Scholar 

  2. 2.

    Horta JF, Simões FJ, Mateus A (2017) Study of wood-plastic composites with reused high density polyethylene and wood sawdust. Procedia Manuf 12:221–229.

    Article  Google Scholar 

  3. 3.

    Gupta MC, Gupta AP (2005) Polymer composite. New Age International (P) Ltd, Delhi

    Google Scholar 

  4. 4.

    Gallos A, Paës G, Allais F, Beaugrand J (2017) Lignocellulosic fibers: a critical review of the extrusion process for enhancement of the properties of natural fiber composites. RSC Adv 55:34638–34654.

    Article  Google Scholar 

  5. 5.

    Jawaid M, Tahir PM, Saba N (2017) Lignocellulosic fibre and biomass-based composite materials. Woodhead Publishing Limited, Sawston

    Google Scholar 

  6. 6.

    Bendahou A, Kaddami H, Sautereau H, Raihane M, Erchiqui F, Dufresne A (2008) Short palm tree fibers polyolefin composites: effect of filler content and coupling agent on physical properties. Macromol Mater Eng 293:140–148.

    Article  CAS  Google Scholar 

  7. 7.

    Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683.

    Article  CAS  Google Scholar 

  8. 8.

    Sefain MZ, Fadl MH, Elwakil NA, Naoum MM (1993) Kinetics of heterogeneous cyanoethylation of cellulose. Polym Int 32:251–255.

    Article  CAS  Google Scholar 

  9. 9.

    Maalej M (2001) Tensile properties of short fiber composites with fiber strength distribution. J Mater Sci 36:2203–2212.

    Article  CAS  Google Scholar 

  10. 10.

    Hubbe MA, Rojas OJ, Lucia LA, Sain M, Forest TA (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980.

    Article  Google Scholar 

  11. 11.

    Li K, Qiu R, Liu W (2015) Improvement of interfacial adhesion in natural plant fiber-reinforced unsaturated polyester composites: a critical review. Rev Adhes Adhes 3:98–120.

    Article  CAS  Google Scholar 

  12. 12.

    Shanks RA (2013) Cellulose-based nanocomposites: processing techniques. In: Dufresne A, Thomas S, Pothen LA (eds) Biopolymer nanocomposites: processing, properties and applications. Wiley, New York, pp 391–410

    Chapter  Google Scholar 

  13. 13.

    ASTM E168-16 (2016) ASTM Int, pp 1–18.

  14. 14.

    ASTM E1252-98 (2013) ASTM Int, pp 1–13.

  15. 15.

    Rana AK, Mandal A, Bandyopadhyay S (2003) Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. Compos Sci Technol 63:801–806.

    Article  CAS  Google Scholar 

  16. 16.

    ASTM E1868-10 (2015) ASTM Int, pp 1–6.

  17. 17.

    ASTM E1131-08 (2014) ASTM Int, pp 1–6.

  18. 18.

    ASTM E2015-04 (2014) ASTM Int, pp 1–10.

  19. 19.

    ASTM D638-14 (2014) ASTM Int, pp 1–17.

  20. 20.

    ASTM D570-98 (2010) ASTM Int, pp 1–4.

  21. 21.

    Bodirlau R, Teaca CA (2009) Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides. Rom J Phys 54:93–104

    CAS  Google Scholar 

  22. 22.

    González-Peña MM, Hale MDC (2011) Rapid assessment of physical properties and chemical composition of thermally modified wood by mid-infrared spectroscopy. Wood Sci Technol 45:83–102.

    Article  CAS  Google Scholar 

  23. 23.

    Titcombe LA (1994) Chemically modified cotton linters: preparations and papermaking properties. Ph.D. Thesis, University of Tasmania. Accessed 23 Mar 2018

  24. 24.

    Kamel S, Hassan EM, El-Sakhawy M (2006) Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. J Appl Polym Sci 100:329–334.

    Article  CAS  Google Scholar 

  25. 25.

    Jia S, Fei J, Zhou J, Chen X, Meng J (2009) Direct electrochemistry of hemoglobin entrapped in cyanoethyl cellulose film and its electrocatalysis to nitric oxide. Biosens Bioelectron 24:3049–3054.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Rahman MR, Ting JSH, Hamdan S, Hasan M, Salleh SF, Rahman MM (2016) Impact of delignification on mechanical, morphological, and thermal properties of wood sawdust reinforced unsaturated polyester composites. J Vinyl Addit Technol 24:185–191.

    Article  CAS  Google Scholar 

  27. 27.

    Das G, Biswas S (2016) Physical, mechanical and water absorption behaviour of coir fiber reinforced epoxy composites filled with Al2O3 particulates. IOP Conf Ser Mater Sci Eng 115:012012.

    Article  Google Scholar 

  28. 28.

    Munoz E, Garcia-Manrique JA (2015) Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. Int J Polym Sci 2015:1–10.

    Article  CAS  Google Scholar 

  29. 29.

    Thakur VK, Singha AS (2010) Mechanical and water absorption properties of natural fibers/polymer biocomposites. Polym Plast Technol Eng 49:694–700.

    Article  CAS  Google Scholar 

Download references


The authors are grateful for the support of Universiti Malaysia Sarawak (UNIMAS).

Author information



Corresponding author

Correspondence to Md Rezaur Rahman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.R., Hamdan, S., Ngaini, Z.B. et al. Cellulose fiber-reinforced thermosetting composites: impact of cyanoethyl modification on mechanical, thermal and morphological properties. Polym. Bull. 76, 4295–4311 (2019).

Download citation


  • Fiber Loading
  • Cyanoethyl Cellulose
  • Cyanoethyl Group
  • Unsaturated Polyester Composites (UPC)
  • Strong Interfacial Bond