Skip to main content
Log in

Preparation and characterization of the acrylic latex-laminating adhesives applied in BOPP/PE composite films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Acrylic latex-laminating adhesives (ALLAs) were successfully prepared via the monomer-starved seeded semi-continuous emulsion copolymerization with butyl acrylate–methyl methacrylate–acrylamide (BA–MMA–Am) monomers, and only 1.1 wt% emulsifier contents were employed. The effect of Am on final latex, the dried latex films, and adhesive properties of ALLAs were discussed by utilizing rotational viscometer, dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectrometer, contact angle, differential scanning calorimeter, thermogravimetric analysis (TG), and mechanical experiments, respectively. The results indicated that the peel strength of the biaxial-oriented polypropylene/polyethylene composite films can reach a peak (3.15 N/15 mm) at the content of 2 wt% Am in the pre-emulsion feed, which satisfies an acceptable minimum peel strength (0.8 N/15 mm) for application. Additionally, average particle size of the final latex experienced few changes, but the particle size distribution of the latex changed notably as Am contents varied from 0 to 10 wt%, while Tg of ALLAs increased gradually, and the molecular weight (Mn and Mw) increased obviously. TG results showed that the ALLAs have excellent thermal stability with a high decomposition temperature of 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ruanpan S, Soucek MD, Manuspiya H (2017) Waterborne acrylic hybrid adhesives based on a methacrylate-functionalized porous clay heterostructure for potential lamination application. J Mater Res 32:3689–3698

    Article  CAS  Google Scholar 

  2. Chen H, Jiang B, Cai ZQ (2015) Preparation and properties of paper–plastic laminating adhesive used for medical packaging materials. Polym Adv Technol 26:1065–1069

    Article  CAS  Google Scholar 

  3. Li S, Jiang Y, Feng X, Deng K, Wang L (2010) Study on water-based laminating adhesives for plastic/plastic lamination. China Adhes 2:42–44

    Google Scholar 

  4. Qie L, Dubé MA (2012) Influence of polymer microstructure on the performance of post-treated latex-based pressure sensitive adhesives. J Appl Polym Sci 124:349–364

    Article  CAS  Google Scholar 

  5. Fang C, Jing Y, Lin Z (2017) The application research of environment-friendly reactive surfactants in acrylate emulsion pressure sensitive adhesives. Int J Adhes Adhes 73:1–7

    Article  CAS  Google Scholar 

  6. Kajtna J, Šebenik U (2017) Novel acrylic/nanocellulose microsphere with improved adhesive properties. Int J Adhes Adhes 74:100–106

    Article  CAS  Google Scholar 

  7. Reddy VS, Rao KC, Rao TS (2016) Synthesis and characteristics of 2-ethylhexylacrylate acrylonitrile methacrylic acid and vinyl acetate emulsions for water born pressure sensitive adhesives. Indian J Adv Chem Sci 4:435–439

    CAS  Google Scholar 

  8. Tan C, Tirri T, Wilen CE (2016) The effect of core–shell particle morphology on adhesive properties of poly (styrene-co-butyl acrylate). Int J Adhes Adhes 66:104–113

    Article  CAS  Google Scholar 

  9. Zhou C, Che R, Zhong L, Xu W, Guo DY, Lei JX (2011) Effect of particle structure on the peel strength and heat resistance properties of vinyl acetate/acrylate latexes laminating adhesives. J Appl Polym Sci 119:2857–2865

    Article  CAS  Google Scholar 

  10. Mizutani K, Hongo C, Matsumoto T, Nishino T (2018) Acrylic pressure-sensitive adhesives with nanodiamonds and acid–base dependence of the pressure-sensitive adhesive properties. J Appl Polym Sci 135:46349–46357

    Article  CAS  Google Scholar 

  11. Kuo CFJ, Chen JB (2018) Synthesis of high-solid-content acrylic pressure-sensitive adhesives by solvent polymerization. J Appl Polym Sci 135:46257–46266

    Article  CAS  Google Scholar 

  12. Fang C, Jing Y, Zong Y, Lin ZX (2017) Effect of trifunctional cross-linker triallyl isocyanurate (TAIC) on the surface morphology and viscoelasticity of the acrylic emulsion pressure-sensitive adhesives. J Adhes Sci Technol 31:858–873

    Article  CAS  Google Scholar 

  13. Dülgar CA, Serhatlı İE (2018) Synthesis of poly (BA-co-MMA) dispersions having AA/MAA/AAm/MAAm comonomers and the comparison of their effect on adhesive performance. Polym Bull 75:877–890

    Article  CAS  Google Scholar 

  14. Sun J, Li L, Cheng H, Huang W (2018) Preparation, characterization and properties of an organic siloxane-modified cassava starch-based wood adhesive. J Adhes 94:278–293

    Article  CAS  Google Scholar 

  15. Mishra S, Singh J, Choudhary V (2010) Synthesis and characterization of butyl acrylate/methyl methacrylate/glycidyl methacrylate latexes. J Appl Polym Sci 115:549–557

    Article  CAS  Google Scholar 

  16. Zhong L, Zhou C, Che R, Lei JX (2010) Preparation and adhesion property of a low temperature cross-linkable vinyl acetate–acrylate copolymer latex. Polym Plast Technol 49:1515–1520

    Article  CAS  Google Scholar 

  17. Xu W, Wang C, Lei J, Zhou CL (2012) The relation between particle structure and the peel strength of vinyl acetate/acrylate core–shell latexes laminating adhesives. Polym Plast Technol 51:35–42

    Article  CAS  Google Scholar 

  18. Fang C, Jing Y, Zong Y, Lin Z (2016) Effect of N, N-dimethylacrylamide (DMA) on the comprehensive properties of acrylic latex pressure sensitive adhesives. Int J Adhes Adhes 71:105–111

    Article  CAS  Google Scholar 

  19. Li G, Wang Z, Yao Y, Zhang Q, Wang N, Qu X, Lovell PA (2017) Power feed synthesis of pressure-sensitive latex adhesives. J Adhes Sci Technol 31:1441–1453

    Article  CAS  Google Scholar 

  20. Deetz MJ, Fahey JE, Smith BD (2001) NMR studies of hydrogen bonding interactions with secondary amide and urea groups. J Phys Org Chem 14:463–467

    Article  CAS  Google Scholar 

  21. Yang C, Song Z, Zhao J, Hu Z, Zhang Y, Jiang Q (2017) Self-assembly properties of ultra-long-chain gemini surfactants bearing multiple amide groups with high performance in fracturing fluid application. Colloid Surface A 523:62–70

    Article  CAS  Google Scholar 

  22. Swift T, Paul N, Swanson L, Katsikogianni M, Rimmer S (2017) Förster Resonance Energy Transfer across interpolymer complexes of poly (acrylic acid) and poly (acrylamide). Polymer 123:10–20

    Article  CAS  Google Scholar 

  23. Ismail H, Ahmad Z, Yew FW (2011) Effect of monomer composition on adhesive performance for waterborne acrylic pressure-sensitive adhesives. J Phys Sci 22:51–63

    CAS  Google Scholar 

  24. Ren S, Dubé MA (2017) Modification of latex microstructure and adhesive performance using d-Limonene as a chain transfer agent. Int J Adhes Adhes 75:132–138

    Article  CAS  Google Scholar 

  25. Fang C, Lin Z (2015) Effect of propyleneimine external cross-linker on the properties of acrylate latex pressure sensitive adhesives. Int J Adhes Adhes 61:1–7

    Article  CAS  Google Scholar 

  26. Shui X, Shen Y, Fei G, Wang HH, Zhu K (2015) The effect of nonionic monomer HAM on properties of cationic surfactant-free acrylic/alkyd hybrid emulsion. J Appl Polym Sci 132:001–009

    Article  CAS  Google Scholar 

  27. Bilgin S, Tomovska R, Asua JM (2017) Effect of ionic monomer concentration on latex and film properties for surfactant-free high solids content polymer dispersions. Eur Polym J 93:480–494

    Article  CAS  Google Scholar 

  28. Yuen HK, Tam EP, Bulock JW (1984) On the glass transition of polyacrylamide. Anal Calorim 185:13–24

    Article  Google Scholar 

  29. Onbulak S, Wang Y, Brutman JP, Hillmyer MA (2017) Synthesis and utility of ethylene (meth) acrylate copolymers prepared by a tandem ring-opening polymerization hydrogenation strategy. J Polym Sci Part A Polym Chem 55:3117–3126

    Article  CAS  Google Scholar 

  30. Daraboina N, Madras G (2008) Thermal and photocatalytic degradation of poly (methyl methacrylate), poly (butyl methacrylate), and their copolymers. Ind Eng Chem Res 47:6828–6834

    Article  CAS  Google Scholar 

  31. Gurney R, Henry A, Schach R, Lindner A, Creton C (2017) Molecular weight dependence of interdiffusion and adhesion of polymers at short contact times. Langmuir 33:1670–1678

    Article  CAS  PubMed  Google Scholar 

  32. Mahdavi H, Taghizadeh SM (2005) The effect of alpha hydroxy acids on the tack of pressure-sensitive adhesive. Iran Polym J 14:379–385

    CAS  Google Scholar 

  33. Gómez-Jiménez-Aberasturi O (2017) Eco-friendly materials for chemical products manufacturing: adhesives derived from biomass and renewable resources. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham, pp 1–6. https://doi.org/10.1007/978-3-319-48281-1_154-1

  34. Qie L, Dubé MA (2010) Manipulation of chain transfer agent and cross-linker concentration to modify latex micro-structure for pressure-sensitive adhesives. Eur Polym J 46:1225–1236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxin Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Wu, B., Lei, Y. et al. Preparation and characterization of the acrylic latex-laminating adhesives applied in BOPP/PE composite films. Polym. Bull. 76, 4469–4483 (2019). https://doi.org/10.1007/s00289-018-2588-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2588-3

Keywords

Navigation