Skip to main content
Log in

Short silica fibre-reinforced polymethylsilsesquioxane–phenolic interpenetrating networks: exploration for use as ablative thermal protection system in aerospace

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Short silica fibre-reinforced simultaneous interpenetrating polymer network (IPN) composites consisting of polymethylsilsesquioxane (PMSQ) and phenol–formaldehyde resin were prepared through thermal cross-linking. Such IPN composites combine the advantageous ablative features of individual systems and excellent thermal insulation aspects. IPNs were prepared with varying composition between PMSQ and PF, at constant fibre content (60% by weight). The influence of IPN composition on the ablation and out-gassing characteristics was explored in detail. Arc-jet evaluation brought out the superior thermal shock resistance of IPN composites that were richer in PMSQ content. Further, it was inferred that the mechanism of thermal protection shifted to ablative heat shielding with increase in PF content. Microstructural characterization of the arc plasma eroded specimens was carried out using FTIR and Raman spectroscopy to understand the chemical mechanism of erosion process. Higher PMSQ content facilitated the formation of SiOC glass, whereas higher PF content resulted in well-defined char layer comprised of predominantly pyrolytic carbon. Higher PMSQ content also favoured lower out-gassing properties. The study brought out the superior thermal protection capability of the IPN with respect to aerospace applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Natali M, Kenny JM, Torre L (2016) Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review. Prog Mater Sci 84:192–275

    Article  CAS  Google Scholar 

  2. Sutton G (1982) The initial development of ablation heat protection: an historical perspective. J Spacecr Rock 19(1):3–11

    Article  Google Scholar 

  3. Torre L, Kenny J, Maffezzoli A (1998) Degradation behaviour of a composite material for thermal protection systems Part I—experimental characterization. J Mater Sci 33:3137–3143

    Article  CAS  Google Scholar 

  4. Buch RR (1991) Rates of heat release and related fire parameters for silicones. Fire Saf 17:1–12

    Article  CAS  Google Scholar 

  5. Buch R, Shields AJ, Kashiwagi T, Cleary T, Steckler K (1998) The influence of surface silica on the pyrolysis of silicones. In: NISTIR annual conference on fire research

  6. Hshieh FY (1998) Shielding effects of silica-ash layer on the composition of silicones and their possible applications on the fire retardancy of organic polymers. Fire Mater 22:69–76

    Article  CAS  Google Scholar 

  7. Alex AS, Rajeev RS, Krishnaraj K, Sreenivas N, Manu SK, Gouri C, Sekkar V (2017) Thermal protection characteristics of polydimethylsiloxane-organoclay nanocomposite. Polym Degrad Stab 144:281–291

    Article  CAS  Google Scholar 

  8. Sperling LH (1994) Interpenetrating polymer networks: an overview. Adv Chem 239:3–38

    Article  CAS  Google Scholar 

  9. Henderson JB, Tant MR, Doherty MP, O’Brien EF (1987) Characterization of the high-temperature behaviour of a glass-filled polymer composite. Composites 18(3):205–215

    Article  CAS  Google Scholar 

  10. Henderson JB, Wiecek TE (1987) A mathematical model to predict the thermal response of decomposing, expanding polymer composites. J Compos Mater 21(4):373–393

    Article  CAS  Google Scholar 

  11. Alex AS, Rajeev RS, Ranjith R, Mohammad F, Gouri C, Sekkar V (2017) Short silica fiber composites with simultaneous interpenetrating polymer networks constituted by siloxane and phenolic systems. Poly Compos. https://doi.org/10.1002/pc.24454

  12. Folkers JL, Friedrich RS (1997) Proceedings of international expo’97, Session 22A, Nashville, TN, Jan 27–29

  13. Ma J, Shi L, Shi Y, Luo S, Xu J (2002) Pyrolysis of polymethylsilsesquioxane. J Appl Polym Sci 85(5):1077–1086

    Article  CAS  Google Scholar 

  14. Liu WC, Yang CC, Chen WC, Dai BT, Tsai MS (2002) The structural transformation and properties of spin-on poly (silsesquioxane) films by thermal curing. J Non-Cryst Solids 311(3):233–240

    Article  CAS  Google Scholar 

  15. Milewski JV (1992) Whiskers and short fiber technology. Polym Compos 13(3):223–236

    Article  CAS  Google Scholar 

  16. Duguet E, Rey S, Robles JMM (2003) Intercalation polymerization. Ency Poly Sci Tech, Wiley

    Book  Google Scholar 

  17. Sperling LH, Hu R (2003) Interpenetrating polymer networks, polymer blends handbook. Springer, Netherlands, pp 417–447

    Book  Google Scholar 

  18. Wagner GH, Pines AN (1952) Silicon oxyhydride. Ind Eng Chem 44(2):321–326

    Article  CAS  Google Scholar 

  19. Alex AS, Thomas D, Manu SK, Sreenivas N, Sekkar V, Gouri C (2017) Addition-cure, room temperature vulcanizing silicone elastomer based syntactic foams with glass and ceramic microballoons. Polym Bull 75:747–767

    Article  CAS  Google Scholar 

  20. Helber B, Chazot O, Hubin A, Magin TE (2015) Microstructure and gas-surface interaction studies of a low-density carbon-bonded carbon fiber composite in atmospheric entry plasmas. Compos Part A Appl Sci Manuf 72:96–107

    Article  CAS  Google Scholar 

  21. Hurwitz FI, Heimann P, Farmer SC, Hembree DM (1993) Characterization of the pyrolytic conversion of polysilsesquioxanes to silicon oxycarbides. J Mater Sci 24:6622–6630

    Article  Google Scholar 

  22. Chubarov VA, Nasenkis MA, Zher YV, Korolec AY, Avrasin YD, Andrianov KA (1973) Thermal degradation of crosslinked polyorganosiloxanes. Polym Sci USSR 15:2981–2989

    Article  Google Scholar 

  23. Zhang XS, Shi LH, Li S, Lin Y (1988) Thermal stability and kinetics of decomposition of polyphenylsilsesquioxanes and some related polymers. Polym Degrad Stab 20:157–172

    Article  CAS  Google Scholar 

  24. Kamiya K, Ohya M, Yoko T (1986) Nitrogen-containing SiO2 glass fibers prepared by ammonolysis of gels made from silicon alkoxides. J Non-Cryst Solids 83:208–222

    Article  CAS  Google Scholar 

  25. Soraru GD, Suttor D (1999) High temperature stability of sol-gel derived ceramics. J Sol-Gel Sci Technol 14(1):69–74

    Article  CAS  Google Scholar 

  26. Mutin HP (2002) Role of redistribution reactions in the polymer route to silicon–carbon–oxygen ceramics. J Am Chem Soc 85:1185–1189

    CAS  Google Scholar 

  27. Kim H, Mattevi C, Kim HJ, Mittal A, Mkhoyan KA, Rimanb RE, Chhowallab M (2013) Optoelectronic properties of graphene thin films deposited by a Langmuir–Blodgett assembly. Nanoscale 5:12365–12374

    Article  CAS  PubMed  Google Scholar 

  28. Ferrari AC, Robertson J (2000) Interpretation of raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  29. Tuinstra F, Koening JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126

    Article  CAS  Google Scholar 

  30. Gregori G, Kleebe H-J, Brequel H, Enzo S, Ziegler G (2005) Microstructure evolution of precursors-derived SiCN ceramics upon thermal treatment between 1000 and 1400 C. J Non-Cryst Solids 351:1393–1402

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Sekkar or C. Gouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alex, A.S., Bhuvaneswari, S., Sreenivas, N. et al. Short silica fibre-reinforced polymethylsilsesquioxane–phenolic interpenetrating networks: exploration for use as ablative thermal protection system in aerospace. Polym. Bull. 76, 3941–3956 (2019). https://doi.org/10.1007/s00289-018-2579-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2579-4

Keywords

Navigation