Skip to main content
Log in

Synthesis of unsaturated polyester resin from waste cellulose and polyethylene terephthalate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Unsaturated polyester resin (UPRc) was synthesized from maleic anhydride (MA) and products of glycolysis. Oligo-polyethylene terephthalate (OPET) and oligo-cellulose (OC) were obtained by depolymerization of polyethylene terephthalate (PET) waste and paper waste, respectively, both with triethylene glycol in the presence of a catalyst. OC and OPET glycolyzed product and UPRc were characterized by gel permeation chromatography, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry and nuclear magnetic resonance (1H-RMN, 13C-RMN, HSQC). Measurements showed that the initial morphological integrity of OC changed due to incorporation of semicrystalline OPET in ploycondensation with MA. Results reflect the enhanced hydrophobicity and thermal stability of the cellulose as a consequence of esterification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Langer E, Waskiewicz S, Lenartowicz M, Bortel K (2015) Application of waste poly(ethylene terephthalate) in the synthesis of new oligomeric plasticizers. Polym Degrad Stab 119:105–112. https://doi.org/10.1016/j.polymdegradstab.2015.04.031

    Article  CAS  Google Scholar 

  2. Hansen SM, Sargeant PB (2000) Fibers, polyester. In: Kirk-Othmer Encyclopedia of chemical technology. https://doi.org/10.1002/0471238961.1615122508011419.a01

  3. Dehghani A, Madadi S, Al-maadeed M, Hassan A, Uzir M (2013) Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Mater Des 52:841–848. https://doi.org/10.1016/j.matdes.2013.06.022

    Article  CAS  Google Scholar 

  4. Smithers P (2014) Demand for PET packaging material to reach $60 billion by 2019. https://www.smitherspira.com/news/2014/april/demand-for-pet-packaging-material-in-2019. Accessed 2 Feb 2018

  5. Nishida H (2011) Development of materials and technologies for control of polymer recycling. Polym J 43:435–447. https://doi.org/10.1038/pj.2011.16

    Article  CAS  Google Scholar 

  6. Villafuerte E, Sánchez MG, Jiménez VM, Pérez NA, Vázquez S (2013) Degradation of poly (ethylene terephthalate) waste with dimethyl tin distanoxane as a catalyst. J Appl Polym Sci 130(5):3482–3488. https://doi.org/10.1002/app.39361

    Article  CAS  Google Scholar 

  7. Johnson KG, Yang LS (2003) Preparation, properties and applications of unsaturated polyesters. In: Scheirs J, Long TE (eds) Modern polyesters: chemistry and technology of polyesters and copolyesters. Wiley, New York, pp 698–713. https://doi.org/10.1002/0470090685.ch21

    Chapter  Google Scholar 

  8. Davis J (2016) Unsaturated Polyester Resin (UPR) market size $12.8bn by 2022: Global Market Insights Inc. Global Market Insights Inc. https://globenewswire.com/news. Accessed 2 Feb 2018

  9. Borjesson M, Westman G (2015) Crystalline nanocellulose-preparation, modification and properties. In: Börjesson M, Westman G (eds) Cellulose—fundamental aspects and current trends. InTech, London, pp 159–191. https://doi.org/10.5772/61899

    Chapter  Google Scholar 

  10. Varshney VK, Naithani S (2011) Chemical functionalization of cellulose derived from nonconventional sources. In: Kalia S, Kaith B, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 43–60. https://doi.org/10.1007/978-3-642-17370-7_2

    Chapter  Google Scholar 

  11. French A, Bertoniere N, Malcolm R, Chanzy H, Gray D, Hattori K, Glasser W (2003) Cellulose. In: Kirk-Othmer encyclopedia of chemical technology, vol 5. Wiley, pp 360–394. http://onlinelibrary.wiley.com/doi/10.1002/0471238961.0305121206180514.a01.pub2/pdf

  12. Granström M (2009) Cellulose derivatives: synthesis, properties and applications. Faculty of Science of the University of Helsinki. Academic dissertation

  13. Mishra D, Kumar V (2010) Eco-economical polyurethane wood adhesives from cellulosic waste: synthesis, characterization and adhesion study. Int J Adhes Adhes 30:47–54. https://doi.org/10.1016/j.ijadhadh.2009.08.003

    Article  CAS  Google Scholar 

  14. Yabushita M (2016) Hydrolysis of cellulose to glucose using carbon catalysts. In: A study on catalytic conversion of non-food biomass into chemicals, pp 43–75. https://doi.org/10.1007/978-981-10-0332-5_2

  15. Dussan KJ, Silva DDV, Moraes EJC, Arruda PV, Felipe MGA (2014) Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse. Chem Eng Trans 38:433–438. https://doi.org/10.3303/CET1438073

    Article  Google Scholar 

  16. Shen D, Xiao R, Gu S, Zhang H (2013) The overview of thermal decomposition of cellulose in lignocellulosic biomass. In: Shen D, Xiao R, Gu S, Zhang H (eds) Cellulose-biomass conversion. InTech, London, pp 193–226. https://doi.org/10.5772/51883

    Chapter  Google Scholar 

  17. Johansson EE (2003) Free radical mediated cellulose degradation. Royal Institute of Technology, Department of Chemistry, Nuclear Chemistry, Stockholm. Doctoral Thesis

  18. Robeson LM (2002) Perspectives in polymer blend technology. In: Utracki LA (ed) Polymer blends handbook. Springer, Dordrecht, pp 1167–1194. https://doi.org/10.1007/0-306-48244-4_17

    Chapter  Google Scholar 

  19. Mitra B (2014) Environment friendly composite materials: biocomposites and green composites. Def Sci J 64(3):244–261. https://doi.org/10.14429/dsj.64.7323

    Article  CAS  Google Scholar 

  20. Islam M, Alam M, Zoccola M (2013) Review on modification of nanocellulose for application in composites. IJIRSET 2(10):5444–5451

    Google Scholar 

  21. Gallego K, López B, Gartner C (2006) Study of blends from recycled polymer for properties improvement. Revista Facultad de Ingeniería Universidad de Antioquia 37:59–70

    CAS  Google Scholar 

  22. Shah H, Srinivasulu B, Shit SC (2013) Influence of banana fibre chemical modification on the mechanical and morphological properties of woven banana fabric/unsaturated polyester resin composites. Polym Renew Resour 4(2):61–84

    Google Scholar 

  23. Lu Z (2003) Chemical coupling in wood-polymer composites. LSU Doctoral Dissertations. http://digitalcommons.lsu.edu/gradschool_dissertations/3722. Accessed 2 Feb 2018

  24. Nanayakkara S, Patti A, Saito K (2014) Chemical depolymerization of lignin involving the redistribution mechanism with phenols and repolymerization of depolymerized products. Green Chem 16:1897–1903. https://doi.org/10.1039/c3gc41708e

    Article  CAS  Google Scholar 

  25. Chen L, Zhu JY, Baez C, Kitinb P, Elderc T (2016) Highly thermal-stable and functional cellulosenanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843. https://doi.org/10.1039/c6gc00687f

    Article  CAS  Google Scholar 

  26. Mohebby B, Moghadam P, Ghotbifar A, Kazemi S (2011) Influence of maleic-anhydride-polypropylene (MAPP) on wettability of polypropylene/wood flour/glass fiber hybrid composites. J Agric Sci Technol 13:877–884

    Google Scholar 

  27. Brown S (2002) Reactive compatibilization of polymer blends. In: Utracki LA (ed) Polymer blends handbook. Springer, Dordrecht, pp 339–414. https://doi.org/10.1007/0-306-48244-4_17

    Chapter  Google Scholar 

  28. Toyama K, Soyama M, Tanaka S, Iji M (2015) Development of cardanol-bonded cellulose thermoplastics: high productivity achieved in two-step heterogeneous process. Cellulose 22:1625–1639. https://doi.org/10.1007/s10570-015-0601-7

    Article  CAS  Google Scholar 

  29. Rowland SP (1978) Hydroxyl reactivity and availability in cellulose. USDA Agricultural Research Service Southern Regional Laboratory, New Orleans, LA. ISBN 0-12-599750-7

    Google Scholar 

  30. Tallon M, Liu X (2016) Industrially significant copolymers containing maleic anhydride. In: Musa OM (ed) Handbook of maleic anhydride based materials, vol PIII(5). Springer, Cham, pp 251–310. https://doi.org/10.1007/978-3-319-29454-4

    Chapter  Google Scholar 

  31. Reddy A, Reddy G, Jayaramudu J, Sudhakar K, Manjula B, Ray S, Sadiku E (2015) Polyethylene terephthalate-based blends: natural rubber and synthetic rubber. In: Visakh PM, Liang M (eds) Poly(ethylene terephthalate) based blends, composites and nanocomposites. Elsevier, Amsterdam, pp 75–98. https://doi.org/10.1016/b978-0-323-31306-3.00005-1

    Chapter  Google Scholar 

  32. Bigan M, Bigot J, Mutel B, Coqueret X (2008) Grafting of copolymer styrene maleic anhydride on poly(ethylene terephthalate) film by chemical reaction and by plasma method optimization of the grafting reaction using experimental design. Appl Surf Sci 254:2300–2308. https://doi.org/10.1016/j.apsusc.2007.09.038

    Article  CAS  Google Scholar 

  33. Donegan M, Milosavljevic V, Dowling D (2013) Activation of PET using an RF atmospheric plasma system. Plasma Chem Plasma Process 33:941–957. https://doi.org/10.1007/s11090-013-9474-4

    Article  CAS  Google Scholar 

  34. Schüth F, Rinaldi R, Meine N, Käldström M, Hilgert J, Kaufman MD (2014) Mechanocatalytic depolymerization of cellulose and raw biomass and downstream processing of the products. Catal Today 234:24–30. https://doi.org/10.1016/j.cattod.2014.02.019

    Article  CAS  Google Scholar 

  35. Samuel R, Fostona M, Jianga N, Allisona L, Ragauskasa A (2011) Structural changes in switchgrass lignin and hemicelluloses during pretreatments by NMR analysis. Polym Degrad Stab 96:2002–2009. https://doi.org/10.1016/j.polymdegradstab.2011.08.015

    Article  CAS  Google Scholar 

  36. Mosier N, Sarikaya A, Ladisch C, Ladisch M (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 17:474–480. https://doi.org/10.1021/bp010028u

    Article  CAS  PubMed  Google Scholar 

  37. Xu J, Jiang J, Dai W, Xu Y (2012) Liquefaction of sawdust in hot compressed ethanol for the production of bio-oils. Process Saf Environ Prot 90:333–338. https://doi.org/10.1016/j.psep.2012.01.001

    Article  CAS  Google Scholar 

  38. Carvalho R (2015) Cork liquefaction: improvement of the process and its application on adhesives formulation. Thesis

  39. Braun B, Dorgan J (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334–341. https://doi.org/10.1021/bm8011117

    Article  CAS  PubMed  Google Scholar 

  40. Qiu X, Hu S (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6:738–781. https://doi.org/10.3390/ma6030738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pönni R, Vuorinen T, Kontturi E (2012) Proposed nano-scale coalescence of cellulose in chemical pulp fibers during technical treatments. Microfibrillar Aggreg Rev BioResour 7(4):6077–6108. https://doi.org/10.15376/biores.7.4.6077-6108

    Article  Google Scholar 

  42. Medronho B, Romano A, Graca M, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587. https://doi.org/10.1007/s10570-011-9644-6

    Article  CAS  Google Scholar 

  43. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  44. French A, Santiago M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588. https://doi.org/10.1007/s10570-012-9833-y

    Article  CAS  Google Scholar 

  45. Ioelovich MY, Veveris GP (1987) Determination of cellulose crystallinity by X-ray diffraction method. J Wood Chem 5:72–80. http://www.tandfonline.com/toc/lwct20/5/4

  46. Jiang L, Zheng A, Zhao Z, He F, Li H, Wu N (2016) The comparison of obtaining fermentable sugars from cellulose by enzymatic hydrolysis and fast pyrolysis. Biores Technol 200:8–13. https://doi.org/10.1016/j.biortech.2015.09.096

    Article  CAS  Google Scholar 

  47. Kostag M, Liebert T, Heinze T (2014) Acetone-based cellulose solvent. Macromol Rapid Commun 35(16):1419–1422. https://doi.org/10.1002/marc.201400211

    Article  CAS  PubMed  Google Scholar 

  48. Moulthrop J, Swatloski R, Moyna G, Rogers R (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559. https://doi.org/10.1039/b417745b

    Article  CAS  Google Scholar 

  49. Klernrn D, Heinze T, Philipp B, Wagenknecht W (1997) New approaches to advanced polymers by selective cellulose functionalization. Acta Polym 48:277–297. https://doi.org/10.1002/actp.1997.010480801

    Article  Google Scholar 

  50. Wen X, Wang H, Wei Y, Wang X, Liu C (2017) Preparation and characterization of cellulose laurate ester by catalyzed transesterification. Carbohyd Polym 168:247–254. https://doi.org/10.1016/j.carbpol.2017.03.074

    Article  CAS  Google Scholar 

  51. Khokhlova E, Kachala V, Ananikov V (2012) The first molecular level monitoring of carbohydrate conversion to 5-hydroxymethylfurfural in ionic liquids. B2O3—an efficient dual-function metal-free promoter for environmentally benign applications. ChemSusChem 5:783–789. https://doi.org/10.1002/cssc.201100670

    Article  CAS  PubMed  Google Scholar 

  52. Kono H, Hashimoto H, Shimizu Y (2015) NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity. Carbohyd Polym 118:91–100. https://doi.org/10.1016/j.carbpol.2014.11.004

    Article  CAS  Google Scholar 

  53. Pan H, Hse CY, Shupe TF (2009) Wood liquefaction and its application to novolac resin. In: Proceedings of advanced biomass science and technology for bio-based products. Chinese Academy of Forestry Publication, Beijing, pp 39–50. https://www.fs.usda.gov/treesearch/pubs/33608

  54. Klug H, Alexander L (1955) X-ray diffraction procedures for polycrystalline and amorphous material. J Polymer Sci XVII:84. https://doi.org/10.1002/aic.690020128

    Article  Google Scholar 

  55. Agostini M, Nogueira G, Weska R, Masumi M (2010) Preparation and characterization of insoluble silk fibroin/chitosan blend films. Polymers 2:719–727. https://doi.org/10.3390/polym2040719

    Article  CAS  Google Scholar 

  56. Ciolacu D, Ciolacu F, Popa V (2011) Amorphous cellulose—structure and characterization. Cellulose Chem Technol 45(1–2):13–21

    CAS  Google Scholar 

  57. Xu L, Lu X, Cheng X (2015) Preparation of modified cotton cellulose in ionic liquid and its adsorption of Cu(II) and Ni(II) from aqueous solutions. RSC Adv 5:79022–79030. https://doi.org/10.1039/c5ra08265j

    Article  CAS  Google Scholar 

  58. Liu C, Sun R, Qin M, Zhang A, Ren J, Xu F, Ye J, Wu S (2007) Chemical modification of ultrasound-pretreated sugarcane bagasse with maleic anhydride. Ind Crops Prod 26:212–219. https://doi.org/10.1016/j.indcrop.2007.03.007

    Article  CAS  Google Scholar 

  59. Bikales N, Segal L (1971) Cellulose and cellulose derivatives. High Polymers V:36

    Google Scholar 

  60. Zhang Y, Li H, Li X, Gibril M, Yu M (2014) Chemical modification of cellulose by in situ reactive extrusion in ionic liquid. Carbohyd Polym 99:126–131. https://doi.org/10.1016/j.carbpol.2013.07.084

    Article  CAS  Google Scholar 

  61. Chang S, Chang H (2001) Comparisons of the photostability of esterifed wood. Polym Degrad Stab 71:261–266. https://doi.org/10.1016/S0141-3910(00)00171-3

    Article  CAS  Google Scholar 

  62. Ghaemy M, Behzadi F (2002) Unsaturated polyester from glycolized PET recycled from postconsumer soft-drink bottles. Iran Polym J 1(2):77–83

    Google Scholar 

  63. Marinković A, Radoman T, Džunuzović E, Džunuzović J, Spasojević P, Isailović B, Bugarski B (2013) Mechanical properties of composites based on unsaturated polyester resins obtained by chemical recycling of poly (ethylene terephthalate). Hem Ind 67(6):913–922. https://doi.org/10.2298/HEMIND130930077M

    Article  Google Scholar 

  64. Zahedi A, Rafizadehb M, Ghafarian S (2009) Unsaturated polyester resin via chemical recycling of off-grade poly(ethylene terephthalate). Polym Int 58:1084–1091. https://doi.org/10.1002/pi.2637

    Article  CAS  Google Scholar 

  65. Hamdaoui L, Moussaouiti M, Gmouh S (2016) Homogeneous esterification of cellulose in the mixture N-butylpyridinium chloride/dimethylsulfoxide. Int J Polymer Sci 2016, ID 1756971. https://doi.org/10.1155/2016/1756971

  66. Birnin-Yauri A, Ibrahim N, Zainuddin N, Abdan K, Then Y, Chieng B (2017) Effect of maleic anhydride-modified poly(lactic acid) on the properties of its hybrid fiber biocomposites. Polymers 9:165. https://doi.org/10.3390/polym9050165

    Article  CAS  PubMed Central  Google Scholar 

  67. Semsarilar M, Tom J, Ladmiral V, Perrier S (2012) Supramolecular hybrids of cellulose and synthetic polymers. Polym. Chem. 3:3266–3275. https://doi.org/10.1039/c2py20385e

    Article  CAS  Google Scholar 

  68. Huang F (2012) Thermal properties and thermal degradation of cellulose tri-stearate (CTs). Polymers 4:1012–1024. https://doi.org/10.3390/polym4021012

    Article  CAS  Google Scholar 

  69. Tahvildari K, Mozafari S, Tarinsun N (2010) Chemical recycling of poly ethylene terphthalat to obtain unsaturated polyester resins. J Appl Chem Res 12:59–68

    Google Scholar 

Download references

Acknowledgements

This research was supported by CONACYT (Consejo Nacional de Ciencia y Tecnología), the UANL (Universidad Autónoma de Nuevo León) and by UT/Austin (University of Texas in Austin) where a visiting research program was conducted in the Human Ecology Department/Biopolymers. We the Authors are grateful for the support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. J. Lozano-Escárcega or Idalia Gómez.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano-Escárcega, R.J., Sánchez-Anguiano, M.G., Serrano, T. et al. Synthesis of unsaturated polyester resin from waste cellulose and polyethylene terephthalate. Polym. Bull. 76, 4157–4188 (2019). https://doi.org/10.1007/s00289-018-2576-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2576-7

Keywords

Navigation