Skip to main content
Log in

Studies on graphene oxide/BMI-reinforced polybenzoxazine nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polybenzoxazine (PBz)/BMI/reduced graphene oxide (rGO) nanocomposites were prepared by varying the weight percentage of rGO from 1 to 5 wt%. The exfoliated sheet morphology of rGO makes it well-dispersed in the PBz/BMI matrix. The curing process monitored by DSC analysis showed two exothermic curves. Of which one is due to the reaction between BMI and furan ring and the other due to ring-opening polymerization. The nanocomposites did not show any agglomeration even at higher loadings (5 wt%) of rGO nanofillers. The degree of dispersion of rGO nanofillers resulted in enhancement of mechanical and thermal properties of PBz/BMI/rGO nanocomposites. A very low percentage of the nanofillers of about 5 wt% could tremendously increase the thermal stability, storage modulus and dielectric properties of the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yusuf Y, Baris K, Narendra Nath G (2009) Recent advancement on polybenzoxazine: a newly developed high performance thermoset. J Polym Sci Part A Polym Chem 47:5565–5576

    Article  CAS  Google Scholar 

  2. Holly FW, Cope AC (1944) Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine. J Am Chem Soc 66:1875–1879

    Article  CAS  Google Scholar 

  3. Liu Y, Yue Z, Gao J (2010) Synthesis characterization and thermally activated polymerization behavior of bisphenol-S/aniline based benzoxazine. Polymer 51:3722–3729

    Article  CAS  Google Scholar 

  4. Santhoshkumar KS, Regunadhan Nair CP (2010) Polybenzoxazines: chemistry and properties. Shrewsbury, Smithers Rapra Technology

    Google Scholar 

  5. Jin L, Agag T, Ishida H (2010) Bis(benzoxazine-maleimide)s as a novel class of high performance resin: synthesis and properties. Eur Polym J 46:354–563

    Article  CAS  Google Scholar 

  6. Liu YL, Hsu CW, Chou CI (2007) Silicon-containing benzoxazines and their polymers: copolymerization and copolymer properties. J Polym Sci Part A Polym Chem 45:1007–1015

    Article  CAS  Google Scholar 

  7. Thirukumaran P, Shakila Parveen A, Sarojadevi M (2014) Synthesis and characterization of novel bio-based benzoxazines from eugenol. RSC Adv 4:7959–7966

    Article  CAS  Google Scholar 

  8. Takeichi T, Kawauchi T, Agag T (2008) High performance polybenzoxazines as a novel type of phenolic resin. Polym J 40:1121–1131

    Article  CAS  Google Scholar 

  9. Dumas L, Bonnaud L, Olivier M, Poorteman M, Dubois P (2016) Arbutin-based benzoxazine: en route to an intrinsic water soluble biobased resin. Green Chem 18:4954–4960

    Article  CAS  Google Scholar 

  10. Calo E, Maffezzoli A, Mele G, Martina F, Mazzetto SE, Tarzia A, Stifani C (2007) Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chem 9:754–759

    Article  CAS  Google Scholar 

  11. Lu Y, Li M, Zhang Y, Hu D, Ke L, Xu W (2011) Synthesis and curing kinetics of benzoxazine containing fluorene and furan groups. Thermochim Acta 515:32–37

    Article  CAS  Google Scholar 

  12. Sini NK, Bijwe J, Varma IK (2014) Renewable benzoxazine monomer from Vanillin: synthesis, characterization, and studies on curing behavior. J Polym Sci Part A Polym Chem 52:7–11

    Article  CAS  Google Scholar 

  13. Zúñiga C, Lligadas G, Ronda JC, Galià M, Cádiz V (2012) Renewable polybenzoxazines based in diphenolic acid. Polymer 53:1617–1623

    Article  CAS  Google Scholar 

  14. Wang C, Sun J, Liu X, Sudo A, Endo T (2012) Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine. Green Chem 14:2799–2806

    Article  CAS  Google Scholar 

  15. Dumas L, Bonnaud L, Olivier M, Poorteman M, Dubois P (2015) Eugenol-based benzoxazine: from straight synthesis to taming of the network properties. J Mater Chem A 3:6012–6018

    Article  CAS  Google Scholar 

  16. Thirukumaran P, Shakila Parveen A, Sarojadevi M, Kim SC (2016) Replacing bisphenol-A with bisguaiacol-F to synthesize polybenzoxazines for a pollution-free environment. New J Chem 40:9313–9319

    Article  CAS  Google Scholar 

  17. Alhassan SM, Qutubuddin S, Schiraldi DA, Agag T, Ishida H (2013) Preparation and thermal properties of graphene oxide/main chain benzoxazine polymer. Eur Polymer J 49:3825–3833

    Article  CAS  Google Scholar 

  18. Meng F, Ishida H, Liu X (2014) Introduction of benzoxazine onto the grapheme oxide surface by click chemistry and the properties of graphene oxide reinforced polybenzoxazine nanohybrids. RSC Adv 4:9471–9475

    Article  CAS  Google Scholar 

  19. Du X, Zhou H, Sun W, Liu HY, Zhou G, Zhou H, Mai YW (2017) Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Compos Sci Technol 140:123–133

    Article  CAS  Google Scholar 

  20. Xing W, Li H, Huang G, Cai LH, Wu J (2017) Graphene oxide induced crosslinking and reinforcement of elastomers. Compos Sci Technol 144:223–229

    Article  CAS  Google Scholar 

  21. Hernandez ED, Bassett AW, Sadler JM, La Scala JJ, Stanzione JF (2016) Synthesis and characterization of bio-based epoxy resins derived from vanillyl alcohol. ACS Sustain Chem Eng 4:4328–4339

    Article  CAS  Google Scholar 

  22. Hong H, Harvey BG, Palmese GR, Stanzione JF, Ng HW, Sakkiah S, Tong W, Sadler JM (2016) Experimental data extraction and in silico prediction of the estrogenic activity of renewable replacements for bisphenol A. Int J Environ Res Public Health 13(705):1–16

    Google Scholar 

  23. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  24. Thirukumaran P, Shakila Parveen A, Sarojadevi M (2014) Synthesis and copolymerization of fully biobased benzoxazines from renewable resources. ACS Sustain Chem Eng 2:2790–2801

    Article  CAS  Google Scholar 

  25. Agag T, Takeichi T (2003) Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets. Macromolecules 36:6010–6017

    Article  CAS  Google Scholar 

  26. Li S, Yan S, Yu J, Yu B (2011) Synthesis and characterization of new benzoxazine-based phenolic resins from renewable resources and the properties of their polymers. J Appl Polym Sci 122:2843–2848

    Article  CAS  Google Scholar 

  27. Dumas L, Bonnaud L, Olivier M, Poorteman M, Dubois P (2015) Bio-based high performance thermosets: stabilization and reinforcement of eugenol-based benzoxazine networks with BMI and CNT. Eur Polym J 67:494–502

    Article  CAS  Google Scholar 

  28. Santhosh Kumar KS, Reghunadhan Nair CP, Sadhana R, Ninan KN (2007) Benzoxazine–bismaleimide blends: curing and thermal properties. Eur Polym J 43:5084–5096

    Article  CAS  Google Scholar 

  29. Dumas L, Bonnaud L, Olivier M, Poorteman M, Dubois P (2014) High performance benzoxazine/CNT nanohybrid network—an easy and scalable way to combine attractive properties. Eur Polym J 58:218–225

    Article  CAS  Google Scholar 

  30. Ke L, Hu D, Lu Y, Feng S, Xie Y, Xu W (2012) Copolymerization of maleimide-based benzoxazine with styrene and the curing kinetics of the resultant copolymer. Polym Degrad Stab 97:132–138

    Article  CAS  Google Scholar 

  31. Zeng M, Wang J, Li R, Liu J, Chen W, Xu Q, Gu Y (2013) The curing behavior and thermal property of graphene oxide/benzoxazine nanocomposites. Polymer 54:3107–3116

    Article  CAS  Google Scholar 

  32. Liu C, Ye S, Feng J (2017) Promoting the dispersion of graphene and crystallization of poly (lactic acid) with a freezing-dried graphene/PEG masterbatch. Compos Sci Technol 144:215–222

    Article  CAS  Google Scholar 

  33. Zhang Y, Lin G (2017) Wu, Polylactide-based nanocomposites with stereocomplex networks enhanced by GO-g-PDLA Dongge. Compos Sci Technol 138:57–67

    Article  CAS  Google Scholar 

  34. Wan YJ, Zhu PL, Yu SH, Yang WH, Sun R, Wong CP, Liao WH (2017) Barium titanate coated and thermally reduced graphene oxide towards high dielectric constant and low loss of polymeric composites. Compos Sci Technol 141:48–55

    Article  CAS  Google Scholar 

  35. Li M, Huang X, Wu C, Xu H, Jiang P, Tanaka T (2012) Fabrication of two-dimensional hybrid sheets by decorating insulating PANI on reduced graphene oxide for polymer nanocomposites with low dielectric loss and high dielectric constant. J Mater Chem 22:23477–23484

    Article  CAS  Google Scholar 

  36. Luo S, Yu S, Sun R, Wong CP (2014) Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss. ACS Appl Mater Interfaces 6:176–182

    Article  CAS  PubMed  Google Scholar 

  37. Biru I, Damian CM, Gârea SA, Iovu H (2016) Benzoxazine-functionalized graphene oxide for synthesis of new nanocomposites. Eur Polym J 83:244–255

    Article  CAS  Google Scholar 

  38. Alhwaige AA, Alhassan SM, Katsiotis MS, Ishida H, Qutubuddin S (2015) Interactions, morphology and thermal stability of graphene-oxide reinforced polymer aerogels derived from star-like telechelic aldehyde-terminal benzoxazine resin. RSC Adv 5:92719–92731

    Article  CAS  Google Scholar 

  39. Xu Q, Zeng M, Feng Z, Yin D, Huang Y, Chen Y, Yan C, Lia R, Gu Y (2016) Understanding the effects of carboxylated groups of functionalized graphene oxide on the curing behavior and intermolecular interactions of benzoxazine nanocomposites. RSC Adv 6:31484–31496

    Article  CAS  Google Scholar 

  40. Mythili CV, Retna AM, Gopalakrishnan S (2004) Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol. Bull Mater Sci 27:235–241

    Article  CAS  Google Scholar 

  41. Isikgora FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6:4497–4559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2018 Yeungnam university research grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Thirukumaran or Seong-Cheol Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirukumaran, P., Shakila Parveen, A., Balasubramanian, R. et al. Studies on graphene oxide/BMI-reinforced polybenzoxazine nanocomposites. Polym. Bull. 76, 3733–3751 (2019). https://doi.org/10.1007/s00289-018-2573-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2573-x

Keywords

Navigation