Skip to main content

Advertisement

Log in

Synthesis and characterization of amphiphilic triblock copolymers including β-alanine/α-methyl-β-alanine and ethylene glycol by “click” chemistry

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Terminally azide poly-β-alanine (PBA-Az) was directly obtained by hydrogen transfer polymerization of acrylamide in the presence of sodium azide as an initiator. However, terminally azide poly(α-methyl β-alanine) (PmBA-Az) was synthesized by the reaction between terminally bromo poly(α-methyl β-alanine) and sodium azide. Dipropargyllated polyethylene glycol (PEG-di-Pr) was synthesized by using the reaction of PEGs with different molecular weights and propargyl bromide. Synthesis of poly(β-alanine-b-ethylene glycol-b-β-alanine) and poly(α-methyl β-alanine-b-ethylene glycol-b-α-methyl β-alanine) amphiphilic ABA triblock copolymers was achieved via “click” chemistry of PBA-Az or PmBA-Az and PEG-di-Pr with different molecular weight. “Click” reaction parameters such as concentration and time were assessed. Macromonomers and the amphiphilic triblock copolymers were characterized by using 1H-NMR, FT-IR, MALDI-MS, TGA, and elemental analysis techniques. The multi-instruments studies of the obtained amphiphilic triblock copolymers reveal that the copolymers easily formed as a result of “click” chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Edit 40:2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11%3c2004:AID-ANIE2004%3e3.0.CO;2-5

    Article  CAS  Google Scholar 

  2. Hein CD, Liu XM, Wang D (2008) Click chemistry, a powerful tool for pharmaceutical sciences. Pharm Res 25:2216–2230. https://doi.org/10.1007/s11095-008-9616-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moses JE, Moorhouse AD (2007) The growing applications of click chemistry. Chem Soc Rev 36:1249–1262. https://doi.org/10.1039/B613014N

    Article  CAS  Google Scholar 

  4. Zhu DY, Cao GS, Qiu WL, Rong MZ, Zhang MQ (2015) Self-healing polyvinyl chloride (PVC) based on microencapsulated nucleophilic thiol-click chemistry. Polymer 69:1–9. https://doi.org/10.1016/j.polymer.2015.05.052

    Article  CAS  Google Scholar 

  5. Balasubramanian R, Kumutha K, Sarojadevi M (2016) Mechanical, thermal and electrical properties of polyimides containing 1, 2, 3-triazole ring prepared by click reaction. Polym Bull 73:309–330. https://doi.org/10.1007/s00289-015-1488-z

    Article  CAS  Google Scholar 

  6. Xu J, Ye J, Liu SY (2007) Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior. Macromolecules 40:9103–9110. https://doi.org/10.1021/ma0717183

    Article  CAS  Google Scholar 

  7. Yuan W, Huang W, Zou H (2016) Synthesis and properties of CO2-responsive copolymer by the combination of reversible addition fragmentation chain transfer polymerization and click chemistry. Polym Bull 73:2199–2210. https://doi.org/10.1007/s00289-016-1603-9M

    Article  CAS  Google Scholar 

  8. Tunca U (2013) Triple click reaction strategy for macromolecular diversity. Macromol Rapid Commun 34:38–46. https://doi.org/10.1002/marc.201200656

    Article  CAS  PubMed  Google Scholar 

  9. Altıntas O, Tunca U (2011) Synthesis of terpolymers by click reactions. Chem Asian J 6:2584–2591. https://doi.org/10.1002/asia.201100138

    Article  CAS  PubMed  Google Scholar 

  10. Parrish B, Breitenkamp RB, Emrick T (2005) PEG- and peptide-grafted aliphatic polyesters by click chemistry. J Am Chem Soc 127:7404–7410. https://doi.org/10.1021/ja050310n

    Article  CAS  PubMed  Google Scholar 

  11. Şanal T, Koçak İ, Hazer B (2017) Synthesis of comb-type amphiphilic graft copolymers derived from chlorinated poly(ɛ-caprolactone) via click reaction. Polym Bull 74:977–995. https://doi.org/10.1007/s00289-016-1757-5

    Article  CAS  Google Scholar 

  12. Xi W, Scott TF, Kloxin CJ, Bowman CN (2014) Click chemistry in materials science. Adv Funct Mater 24:2572–2590. https://doi.org/10.1002/adfm.201302847

    Article  CAS  Google Scholar 

  13. Öztürk T, Meyvacı E (2017) Synthesis and characterization poly(ɛ-caprolactone-b-ethylene glycol-b-ɛ-caprolactone) ABA type block copolymers via “click” chemistry and ring-opening polymerization. J Macromol Sci Part A Pure Appl Chem 54:575–581. https://doi.org/10.1080/10601325.2017.1309251

    Article  CAS  Google Scholar 

  14. Moshaverinia A, Thirumamagal BTS, Schricker SR (2012) Click chemistry: a potential platform for development of novel dental restorative materials. J Macromol Sci Part A Pure Appl Chem 49:288–292. https://doi.org/10.1080/10601325.2012.662027

    Article  CAS  Google Scholar 

  15. Öztürk T, Kılıçlıoğlu A, Savaş B, Hazer B (2018) Synthesis and characterization of poly(ɛ-caprolactone-co-ethylene glycol) star-type amphiphilic copolymers by “click” chemistry and ring-opening polymerization. J Macromol Sci Part A. https://doi.org/10.1080/10601325.2018.1481344

    Article  Google Scholar 

  16. Chen J, Xiang J, Cai Z, Yong H, Wang H, Zhang L, Luo W, Min H (2010) Synthesis of hydrophobic polymer brushes on silica nanoparticles via the combination of surface-initiated ATRP, ROP and click chemistry. J Macromol Sci Part A Pure Appl Chem 47:655–662. https://doi.org/10.1080/10601325.2010.483357

    Article  CAS  Google Scholar 

  17. Binder WH, Sachsenhofer R (2007) ‘Click’ chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54. https://doi.org/10.1002/marc.200600625

    Article  CAS  Google Scholar 

  18. Enomoto-Rogers Y, Iwata T (2012) Synthesis of xylan-graft-poly(l–lactide) copolymers via click chemistry and their thermal properties. Carbohydr Polym 87:1933–1940. https://doi.org/10.1016/j.carbpol.2011.09.092

    Article  CAS  Google Scholar 

  19. Öztürk T, Kayğın O, Göktaş M, Hazer B (2016) Synthesis and characterization of graft copolymers based on polyepichlorohydrin via reversible addition-fragmentation chain transfer polymerization. J Macromol Sci Part A Pure Appl Chem 53:362–367. https://doi.org/10.1080/10601325.2016.1166002

    Article  CAS  Google Scholar 

  20. Göktaş M, Öztürk T, Atalar MN, Tekeş AT, Hazer B (2014) One-step synthesis of triblock copolymers via simultaneous reversible-addition fragmentation chain transfer (RAFT) and ring-opening polymerization using a novel difunctional macro-raft agent based on polyethylene glycol. J Macromol Sci Part A Pure Appl Chem 51:854–863. https://doi.org/10.1080/10601325.2014.953366

    Article  CAS  Google Scholar 

  21. Öztürk T, Yavuz M, Göktaş M, Hazer B (2016) One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring-opening polymerization. Polym Bull 73:1497–1513. https://doi.org/10.1007/s00289-015-1558-2

    Article  CAS  Google Scholar 

  22. Öztürk T, Göktaş M, Savaş B, Işıklar M, Atalar MN, Hazer B (2014) Synthesis and characterization of poly(vinylchloride-graft-2-vinylpyridine) graft copolymers using a novel macroinitiator by reversible addition-fragmentation chain transfer polymerization. e-Polymers 14:27–34. https://doi.org/10.1515/epoly-2013-0011

    Article  CAS  Google Scholar 

  23. Öztürk T, Göktaş M, Hazer B (2010) One-step synthesis of triarm block copolymers via simultaneous reversible-addition fragmentation chain transfer and ring-opening polymerization. J Appl Polym Sci 117:1638–1645. https://doi.org/10.1002/app.32031

    Article  CAS  Google Scholar 

  24. Noshay A, Mcgrath JE (1977) Block copolymers: overview and critical survey. Academic Press, New York

    Google Scholar 

  25. Georgiev R, Todorova L, Christova D, Georgieva B, Vasileva M, Babeva T (2016) Influence of PEO, PDMAA and corresponding di-and triblock copolymers on the optical properties of niobia thin films. Bulg Chem Commun 48:167–172

    Google Scholar 

  26. Riess G, Hurtres G, Bahadur P (1985) Encyclopedia of polymer science and engineering. Wiley, New York

    Google Scholar 

  27. Öztürk T, Atalar MN, Göktaş M, Hazer B (2013) One-step synthesis of block-graft copolymers via simultaneous reversible-addition fragmentation chain transfer and ring-opening polymerization using a novel macroinitiator. J Polym Sci Part A Polym Chem 51:2651–2659. https://doi.org/10.1002/pola.26654

    Article  CAS  Google Scholar 

  28. Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J (2006) Macromolecular architectures by living and controlled/living polymerizations. Prog Polym Sci 31:1068–1132. https://doi.org/10.1016/j.progpolymsci.2006.07.002

    Article  CAS  Google Scholar 

  29. Deffieux A, Schappacher M (1999) Synthesis and characterization of star and comb polystyrenes using isometric poly(chloroethyl vinyl ether) oligomers as reactive backbone. Macromolecules 32:1797–1802. https://doi.org/10.1021/ma981612v

    Article  CAS  Google Scholar 

  30. Velichkova RS, Christova DC (1995) Amphiphilic polymers from macromonomers and telechelics. Prog Polym Sci 20:819–887. https://doi.org/10.1016/0079-6700(95)00004-Y

    Article  CAS  Google Scholar 

  31. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170. https://doi.org/10.1016/S0079-6700(03)00015-7

    Article  CAS  Google Scholar 

  32. Gacal B, Durmaz H, Tasdelen MA, Hizal G, Tunca U, Yagci Y, Demirel AL (2006) Anthracene–maleimide-based Diels–Alder “click chemistry” as a novel route to graft copolymers. Macromolecules 39:5330–5336. https://doi.org/10.1021/ma060690c

    Article  CAS  Google Scholar 

  33. Pispas S, Hadjichristidis N (2003) Aggregation behavior of poly(butadiene-b-ethylene oxide) block copolymers in dilute aqueous solutions: effect of concentration, temperature, ionic strength, and type of surfactant. Langmuir 19:48–54. https://doi.org/10.1021/la020561z

    Article  CAS  Google Scholar 

  34. Öztürk T, Hazer B (2010) Synthesis and characterization of a novel macromonomer initiator for reversible addition fragmentation chain transfer (RAFT). Evaluation of the polymerization kinetics and gelation behaviors. J Polym Sci Part A Polym Chem 47:265–272

    Google Scholar 

  35. Öztürk T, Göktaş M, Hazer B (2011) Synthesis and characterization of poly(methyl methacrylate-block-ethylene glycol-block-methyl methacrylate) block copolymers by reversible addition fragmentation chain transfer polymerization. J Macromol Sci Part A Pure Appl Chem 48:65–70. https://doi.org/10.1080/10601325.2011.528310

    Article  CAS  Google Scholar 

  36. Asan N, Öztürk T (2017) Synthesis and characterization of poly (vinyl chloride-graft-ethylene glycol) graft copolymers by “click” chemistry. Hacet J Biol Chem 45:35–42. https://doi.org/10.15671/HJBC.2017.139

    Article  Google Scholar 

  37. Öztürk T, Ayyıldız H, Meyvacı E, Göktaş M (2017) Synthesis and characterization of poly (epichlorohydrin-graft-ethylene glycol) graft copolymers by “click” chemistry. Karaelmas Fen ve Mühendislik Dergisi 7:47–54

    Google Scholar 

  38. Xue Y, Ma D, Zhang T, Lin S, Shao S, Gu N (2014) Synthesis and characterization of comblike methoxy polyethylene glycol-grafted polyurethanes via ‘click’ chemistry. J Macromol Sci Part A Pure Appl Chem 51:456–464. https://doi.org/10.1080/10601325.2014.893145

    Article  CAS  Google Scholar 

  39. Hazer B (2010) Amphiphilic poly(3-hydroxy alkanoate)s: potential candidates for medical applications. Int J Polym Sci 2010:423460. https://doi.org/10.1155/2010/423460

    Article  CAS  Google Scholar 

  40. Erciyes AT, Erim M, Hazer B, Yağcı Y (1992) Synthesis of polyacrylamide flocculants with poly(ethylene glycol) segments by redox polymerization. Angew Macromol Chem 200:163–171

    Article  CAS  Google Scholar 

  41. Öztürk T, Cavicchi CA (2018) Synthesis and characterization of poly(epichlorohydrin-g-ε-caprolactone) graft copolymers by “click” chemistry. J Polym Mater 35:209–220

    Article  Google Scholar 

  42. Çatıker E, Güven O, Salih B (2018) Novel hydrophobic macromonomers for potential amphiphilic block copolymers. Polym Bull 75:47–60. https://doi.org/10.1007/s00289-017-2014-2

    Article  CAS  Google Scholar 

  43. Masamoto J, Sasguri K, Ohizumi C, Yamaguchi K, Kobayashi H (1970) A new synthetic fiber made of β-alanine. J Appl Polym Sci 14:667–680

    Article  CAS  Google Scholar 

  44. Masamoto J (2000) Β-alanine. Rep Prog Polym Phys Jpn 43:867–876

    Google Scholar 

  45. Breslow DS, Hulse GE, Matlack AS (1957) Synthesis of poly-b-alanine from acrylamide. A novel synthesis of b-alanine. J Am Chem Soc 79:3760–3763

    Article  CAS  Google Scholar 

  46. Acik G, Sey E, Tasdelen MA (2018) Polypropylene-based graft copolymers via CuAAC click chemistry. Express Polym Lett 12:418–428. https://doi.org/10.3144/expresspolymlett.2018.34

    Article  CAS  Google Scholar 

  47. Liu N, Ma CH, Sun RW, Huang J, Li C, Wu Z-Q (2017) Facile synthesis and chiral recognition of block and star copolymers containing stereoregular helical poly(phenyl isocyanide) and polyethylene glycol blocks. Polym Chem 8:2152–2163. https://doi.org/10.1039/C7PY00028F

    Article  CAS  Google Scholar 

  48. Pan X, Gao H, Fu G, Gao Y, Zhang W (2016) Synthesis, characterization and chondrocyte culture of polyhedral oligomeric silsesquioxane (POSS)-containing hybrid hydrogels. RSC Adv 6:23471–23478. https://doi.org/10.1039/C5RA27989E

    Article  CAS  Google Scholar 

  49. Kumar K, Adhikary P, Tungala K, Azmeera V, Krishnamoorthi S (2015) Synthesis, characterization, and in vitro drug release study of 3-arm poly-b-alanine. J Appl Polym Sci 132:42124. https://doi.org/10.1002/APP.42124

    Article  Google Scholar 

  50. Lakouraj MM, Hasantabar V, Bagheri N (2013) Synthesis of polyethers containing triazole units in the backbone by click chemistry in a tricomponent reaction. J Polym 2013:167106. https://doi.org/10.1155/2013/167106

    Article  CAS  Google Scholar 

  51. Rukmanikrishnan B, Muthusamy S (2018) Preparation and properties of polyimides containing 1,2,3-triazole moieties. Adv Polym Technol 37:21641. https://doi.org/10.1002/adv.21641

    Article  CAS  Google Scholar 

  52. Thanomsilp C, Phetthianchai U (2012) Synthesis and characterization of PLA-CO-PEG copolymers. Adv Mater Res 506:178–181. https://doi.org/10.4028/www.scientific.net/AMR.506.178

    Article  CAS  Google Scholar 

  53. Çatıker E, Basan S (2017) Miscibility and thermal degradation kinetics of poly-β-alanine/poly(3-hydroxypropionate) blends. JOTCSA 4:341–354. https://doi.org/10.18596/jotcsa.287333

    Article  Google Scholar 

  54. Çatıker E, Sancaktar E (2014) Blends of poly(3-hydroxybutyrate) with poly(β-alanine) and its derivatives. J App Polym Sci 131:40484. https://doi.org/10.1002/APP.40484

    Article  Google Scholar 

  55. Jamshid MR (2008) Synthesis and thermal properties of novel multiblock biodegradable copolymers derived from polyethylene glycol, ε-caprolactone and p-dioxanone. Sci Asia 34:207–213. https://doi.org/10.2306/scienceasia1513-1874.2008.34.207

    Article  CAS  Google Scholar 

  56. Kailong J, Torkelson JM (2015) Tg and Tg breadth of poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene miscible polymer blends characterized by differential scanning calorimetry, ellipsometry, and fluorescence spectroscopy. Polymer 65:233–242. https://doi.org/10.1016/j.polymer.2015.04.016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temel Öztürk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çatıker, E., Meyvacı, E., Atakay, M. et al. Synthesis and characterization of amphiphilic triblock copolymers including β-alanine/α-methyl-β-alanine and ethylene glycol by “click” chemistry. Polym. Bull. 76, 2113–2128 (2019). https://doi.org/10.1007/s00289-018-2561-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2561-1

Keywords

Navigation