Skip to main content

Chemical compatibility of lactic acid-grafted starch nanocrystals (SNCs) with polylactic acid (PLA)

Abstract

In this work, starch nanocrystals were chemically grafted with lactic acid using esterification reaction and its compatibility with poly (lactic acid) (PLA). Initially, ungrafted and grafted starch nanocrystals were characterized to understand the crystalline, functional, thermal and morphological properties by means of wide-angle X-ray scattering, Fourier transform infrared, X-ray photoelectron spectroscopy, thermogravimetric analysis and transmission electron microscopy, respectively. The results confirmed that the surface of starch nanocrystals was successfully modified with lactic acid. Subsequently, grafted starch nanocrystals were blended, in solution, with PLA at different concentrations ranging from 5 to 30 wt%. Then, starch nanocrystals/PLA films were prepared using solvent casting technique. The influence of the grafted starch nanocrystals, at different concentrations, on thermal, mechanical and morphological properties of resulting PLA nanocomposites was investigated using differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis and scanning electron microscopy, respectively. The results revealed that the interfacial adhesion and the compatibility between starch nanocrystals and PLA matrix were substantially improved by the grafting. This improved compatibility between grafted starch nanocrystals and PLA led to a significant increase in PLA nanocomposites crystallinity as compared to neat PLA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Amar Ali S, Fariha H, Abdul H, Safia A (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  CAS  Google Scholar 

  2. 2.

    Klaus K (2007) Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem 9:899–907

    Article  CAS  Google Scholar 

  3. 3.

    Vijay Kumar T, Amar Singh S, Inderjeet Kaur M (2010) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15:137–146

    Article  CAS  Google Scholar 

  4. 4.

    Madhavan N, Nimisha RN, Rojan PJ (2001) An overview of the recent developments in polylactide (PLA) research. Biores Technol 101:8493–8501

    Article  CAS  Google Scholar 

  5. 5.

    Rafael AA, Bruse H, Susan S, Ruben H (2003) Mechanical, physical, and barrier properties of poly (lactide) films. J Plast Film Sheeting 19:123–135

    Article  CAS  Google Scholar 

  6. 6.

    Rajendra P, Sunil UT, Suresh S, Abraham JD (2014) Biomedical applications of poly (lactic acid). Recent Pat Regen Med 4:40–51

    Google Scholar 

  7. 7.

    Bhuvanesh G, Revagde N, Jons HJ (2007) An overview: poly (lactic acid) fiber. Prog Polym Sci 32:455–482

    Article  CAS  Google Scholar 

  8. 8.

    Michael C, Harald K, Wolfgang B, Drik C et al. (2013) Study on bio-based polymers in the world capacities. Production and applications: status quo and trends towards 2020 nova-Institut GmbH. Bio-based Polymers in the World-bio-based.eu

  9. 9.

    Drieskens M, Peeters R, Jules Mullens, Franko D, Lemstra P et al (2009) Structure versus properties relationship of poly (lactic acid). J Polym Sci B Polym Phys 47:2247–2258

    Article  CAS  Google Scholar 

  10. 10.

    John RD, Hans L, Michael M (2000) Thermal and rheological properties of commercial-grade poly (lactic acid). J Polym Environ 8:1–9

    Article  Google Scholar 

  11. 11.

    Martin O, Luc A (2001) Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  12. 12.

    Li B, Si-Chong C, Zhi-Cheng Q et al (2008) Synthesis of poly (lactic acid-b-p-dioxanone) block copolymers from ring-opening polymerization of p-dioxanone by poly (L-lactic acid) macroinitiators. Polym Bull 61:139–146

    Article  CAS  Google Scholar 

  13. 13.

    Masayuki H, Kimura Y (2008) Thermomechanical properties of stereoblock poly (lactic acid) with different PLLA/PDLA block compositions. Polymer 49:2656–2661

    Article  CAS  Google Scholar 

  14. 14.

    Nelly R, Takahiko K, Go M, Koji N, Toshiji K, Hiroshi W, Hirotaka O, Makoto K et al (2009) Effect of polylactide stereocomplex on the crystallization behavior of poly(l-lactic acid). Macromolecules 42:4739–4745

    Article  CAS  Google Scholar 

  15. 15.

    Géraldine R, Francoise L, Boileau S, Philippe G, Daniel G (2007) Poly (D, L-lactide)/poly (methyl methacrylate) interpenetrating polymer networks: synthesis, characterization, and use as precursors to porous polymeric materials. Polymer 48:7017–7028

    Article  CAS  Google Scholar 

  16. 16.

    Miroslaw P, Jeremiasz KJ, Gisele B (2007) Polylactide/montmorillonite nanocomposites: structure, dielectric, viscoelastic and thermal properties. Eur Polym J 43:2819–2835

    Article  CAS  Google Scholar 

  17. 17.

    Joo YN, Okamoto M, Hirotaka O, Mitsura N, Arimitsu U, Masatoshi M (2006) Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 47:340–1347

    Google Scholar 

  18. 18.

    Gorna K, Hund M, Vucak M, Gerhard W (2008) Amorphous calcium carbonate in form of spherical nanosized particles and its application as fillers for polymers. Mater Sci Eng, A 477:217–225

    Article  CAS  Google Scholar 

  19. 19.

    Bleach NC, Nazhat SN, Tanner KE, Kellomaki M, Tormala P (2002) Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-poly lactide composites. Biomaterials 23:1579–1585

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Benjamin B, Jourg M (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607

    Article  CAS  Google Scholar 

  21. 21.

    Seerage G, Preetha B, Chandradhara D, Srecko V, Emi GB, Anitah P, Sabu T (2017) Facile synthesis of chitin nanocrystals decorated on 3D cellulose aerogels as a new multi-functional material for waste water treatment with enhanced anti-bacterial and anti-oxidant properties. New J Chem 41(12746–12755):4

    Google Scholar 

  22. 22.

    Seerage G, Anitah P, Sabu T (2016) Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. J Water Process Eng 14(1–8):3

    Google Scholar 

  23. 23.

    Seerage G, Preetha B, Anitah P, Sabu T (2017) Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine. Carbohyd Polym 165:115–122

    Article  CAS  Google Scholar 

  24. 24.

    Preetha B, Sreekala MS, Matjaz K, Huskic M, Sabu T (2017) Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohyd Polym 169(176–188):5

    Google Scholar 

  25. 25.

    Preetha B, Seerage G, Sreekala MS, Sabu T (2018) UV resistant transparent bionanocomposite films based on potato starch/cellulose for sustainable packaging. Starch-Stärke 70:1700139

    Article  CAS  Google Scholar 

  26. 26.

    Ratanjothi H, Hyun-Jung C, Hughes T, Qiang L (2010) Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res Int 43:399–413

    Article  CAS  Google Scholar 

  27. 27.

    Le Corre D, Julien D, Alain D (2010) Starch nanoparticles: a review. Biomacromol 11:1139–1153

    Article  CAS  Google Scholar 

  28. 28.

    Michel AH, Hongbo L (2007) Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 48:270–280

    Article  CAS  Google Scholar 

  29. 29.

    Li H, Michel H (2008) Crystallization of PLA/thermoplastic starch blends. Int Polym Proc 23:412–418

    Article  Google Scholar 

  30. 30.

    Jian-Feng Z, Xiuzhi S (2004) Mechanical properties of poly (lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromol 5:1446–1451

    Article  CAS  Google Scholar 

  31. 31.

    Hua W, Xiuzhi S, Paul S (2002) Mechanical properties of Poly (lactic acid) and wheat starch blends with methylenediphenyl diisocyanate. J Appl Polym Sci 84:1257–1262

    Article  CAS  Google Scholar 

  32. 32.

    Hassan N, Abass D (2010) Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohyd Polym 79:731–737

    Article  CAS  Google Scholar 

  33. 33.

    Wim T, Mohamed NB, Alian D (2006) Starch nanocrystals with large chain surface modifications. Langmuir 22:4804–4810

    Article  CAS  Google Scholar 

  34. 34.

    Hellene A, Sonia MB, Laurent L, Alain D (2005) Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber. Macromolecules 38:3783–3792

    Article  CAS  Google Scholar 

  35. 35.

    Moad G (2011) Chemical modification of starch by reactive extrusion. Prog Polym Sci 36:218–237

    Article  CAS  Google Scholar 

  36. 36.

    Helene A, Sonia MB, Mohamed NC, Alain D (2005) Surface chemical modification of waxy maize starch nanocrystals. Langmuir 21:2425–2433

    Article  CAS  Google Scholar 

  37. 37.

    Tatsuro O, Tomoyuki U, Yuichi O (2001) Synthesis of poly (L-lactide) with one terminal d-glucose residue and wettability of its film surface. Macromol Biosci 1:371–375

    Article  Google Scholar 

  38. 38.

    George FF, Frederick CF, Randal LS (2004) Graft polymerization of acrylonitrile onto spherocrystals formed from jet cooked cornstarch. Carbohyd Polym 56:77–84

    Article  CAS  Google Scholar 

  39. 39.

    Philippe D, Mohan K, Ramani N (1999) Aliphatic polyester-grafted starch-like polysaccharides by ring-opening polymerization. Polymer 40:3091–3100

    Article  Google Scholar 

  40. 40.

    Eui-Jun C, Chang-Hyeon K, Park J-K (1999) Synthesis and characterization of the starch-g-polycaprolactone copolymer. Macromolecules 32:7402–7408

    Article  CAS  Google Scholar 

  41. 41.

    Manuel M, Martuscelli E, Raimo M (2000) Review properties of blends and composites based on poly (3-hydroxy) butyrate (PHB) and poly (3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. J Mater Sci 35:523–545

    Article  Google Scholar 

  42. 42.

    Li C, Yushan N, Xinchao B, Xueyu Q, Xiuli Z, Xuesi C, Xiabin J (2005) A novel approach to grafting polymerization of ε-caprolactone onto starch granules. Carbohyd Polym 60:103–109

    Article  CAS  Google Scholar 

  43. 43.

    Ning L, Jin H, Peter RC et al (2011) Preparation modification, and application of starch nanocrystals in nanomaterials: a review. J Nanomater 20:573687

    Google Scholar 

  44. 44.

    Li C, Xueyu Q, Mingxiao D et al (2005) The starch grafted poly (L-lactide) and the physical properties of its blending composites. Polymer 46:5723–5729

    Article  CAS  Google Scholar 

  45. 45.

    Hong-Sheng X, Xiujuan JD, Peter RL, Zhong-Ming L (2009) Poly (L-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci, Part B: Polym Phys 47:2341–2352

    Article  CAS  Google Scholar 

  46. 46.

    Wisam HH, Mansor BA, Emad A, Nor Azowa I (2010) Preparation and characterization of polylactic acid/polycaprolactone clay nanocomposites. J Appl Sci 10:97–106

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank National Science and Engineering Research Council (NSERC) of Canada, Centre Québecois des Matériaux Fonctionnels (CQMF) and Research Center for High Performance Polymer and Composite Systems (CREPEC) of Fonds de Recherche du Québec Nature et Technologie (FRQNT) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Said Elkoun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding publication of this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zamir, S.S., Frouzanmehr, M.R., Nagalakshmaiah, M. et al. Chemical compatibility of lactic acid-grafted starch nanocrystals (SNCs) with polylactic acid (PLA). Polym. Bull. 76, 3481–3499 (2019). https://doi.org/10.1007/s00289-018-2548-y

Download citation

Keywords

  • Starch nanocrystals
  • Chemical grafting
  • Interfacial adhesion
  • PLA nanocomposites
  • Crystallinity