Bayer O (1947) Das di-isocyanat-polyadditionsverfahren (polyurethane). Angew Chem 59(9):257–272. https://doi.org/10.1002/ange.19470590901
Article
Google Scholar
Seymour RB, Kauffman GB (1992) Polyurethanes: a class of modern versatile materials. J Chem Educ 69(11):909. https://doi.org/10.1021/ed069p909
Article
CAS
Google Scholar
Boiteux G, Cuvé L, Pascault J-P (1994) Synthesis and properties of polyurethanes based on polyolefin: 3. Monitoring of phase separation by dielectric relaxation spectroscopy of segmented semicrystalline polyurethane prepared in bulk by the use of emulsifiers. Polymer 35(1):173–178. https://doi.org/10.1016/0032-3861(94)90068-X
Article
CAS
Google Scholar
Saunders JH, Slocombe RJ (1948) The chemistry of the organic isocyanates. Chem Rev 43(2):203–218. https://doi.org/10.1021/cr60135a001
Article
CAS
PubMed
Google Scholar
Figovsky O et al (2016) Environment friendly polyurethanes: nonisocyanate synthesis. Zhurnal Al’tern Energ Ekol (Rus) 23–24:52–87
Google Scholar
Rokicki G, Parzuchowski PG, Mazurek M (2015) Non-isocyanate polyurethanes: synthesis, properties, and applications. Polym Adv Technol 26(7):707–761. https://doi.org/10.1002/pat.3522
Article
CAS
Google Scholar
PlasticsEurope (2016) Plastics—the facts 2016: an analysis of European plastics production, Demand and Waste Data (PlasticsEurope)
Blattmann H, Lauth M, Mülhaupt R (2016) Flexible and bio-based nonisocyanate polyurethane (NIPU) foams. Macromol Mater Eng 301(8):944–952. https://doi.org/10.1002/mame.201600141
Article
CAS
Google Scholar
Boujard C, Foray N, Caudron JC (2014) Panorama du marché du polyuréthane et état de l’art de ses techniques de recyclages. Report 1202C0079, ADEME
Segura DM et al (2005) Chemistry of polyurethane adhesives and sealants. Handb Adhes Sealants 1:101–162. https://doi.org/10.1016/S1874-5695(02)80004-5
Article
Google Scholar
Kiester E et al (2007) An incomplete history of world war I. 1. Murdoch Books, p 74. ISBN 1-74045-970-9
Schneider W, Diller W (2000) Phosgene. Ullmann’s Encycl Ind Chem. https://doi.org/10.1002/14356007.a19_411
Article
Google Scholar
Baur X et al (1994) Respiratory and other hazards of isocyanates. Int Arch Occup Environ Health 66(3):141–152. https://doi.org/10.1007/bf00380772
Article
CAS
PubMed
Google Scholar
Kathalewar MS et al (2013) Non-isocyanate polyurethanes: from chemistry to applications. RSC Adv 3(13):4110–4129. https://doi.org/10.1039/c2ra21938g
Article
CAS
Google Scholar
North M, Pasquale R (2009) Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew Chem 121(16):2990–2992. https://doi.org/10.1002/ange.200805451
Article
Google Scholar
Włoch M, Datta J (2017) Nonisocyanate polyurethanes. Polyurethane Polym. https://doi.org/10.1016/b978-0-12-804039-3.00007
Article
Google Scholar
Goodrich P et al (2017) Sustainable cyclic carbonate production, utilizing carbon dioxide and azolate ionic liquids. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.7b00355
Article
Google Scholar
Datta J, Włoch M (2016) Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di-or polyamines in the context of structure–properties relationship and from an environmental point of view. Polym Bull 73(5):1459–1496. https://doi.org/10.1007/s00289-015-1546-6
Article
CAS
Google Scholar
Javni I, Hong DP, Petrović ZS (2013) Polyurethanes from soybean oil, aromatic, and cycloaliphatic diamines by nonisocyanate route. J Appl Polym Sci 128(1):566–571. https://doi.org/10.1002/app.38215
Article
CAS
Google Scholar
Schmidt S et al (2017) Erythritol dicarbonate as intermediate for solvent-and isocyanate-free tailoring of bio-based polyhydroxyurethane thermoplastics and thermoplastic elastomers. Macromolecules 50(6):2296–2303. https://doi.org/10.1021/acs.macromol.6b02787
Article
CAS
Google Scholar
Schimpf V et al (2017) High purity limonene dicarbonate as versatile building block for sustainable non-isocyanate polyhydroxyurethane thermosets and thermoplastics. Macromolecules 50(3):944–955. https://doi.org/10.1021/acs.macromol.6b02460
Article
CAS
Google Scholar
Nowick JS et al (1992) An improved method for the synthesis of enantiomerically pure amino acid ester isocyanates. J Organ Chem 57(26):7364–7366. https://doi.org/10.1021/jo00052a069
Article
CAS
Google Scholar
Ozaki S (1972) Recent advances in isocyanate chemistry. Chem Rev 72(5):457–496. https://doi.org/10.1021/cr60279a002
Article
Google Scholar
Paul F (2000) Catalytic synthesis of isocyanates or carbamates from nitroaromatics using group VIII transition metal catalysts. Coord Chem Rev 203(1):269–323. https://doi.org/10.1016/S0010-8545(99)00230-1
Article
CAS
Google Scholar
Shi F, Deng Y (2002) Polymer-immobilized gold catalysts for the efficient and clean syntheses of carbamates and symmetric ureas by oxidative carbonylation of aniline and its derivatives. J Catal 211(2):548–551. https://doi.org/10.1006/jcat.2002.3772
CAS
Article
Google Scholar
Chaturvedi D (2012) Perspectives on the synthesis of organic carbamates. Tetrahedron 68(1):15–45. https://doi.org/10.1016/j.tet.2011.10.001
Article
CAS
Google Scholar
Chen Z et al (2017) Poly(urethane–carbonate) s from carbon dioxide. Macromolecules 50(6):2320–2328. https://doi.org/10.1021/acs.macromol.7b00142
Article
CAS
Google Scholar
Hall HK Jr, Schneider AK (1958) Polymerization of cyclic esters, urethans, ureas and imides. J Am Chem Soc 80(23):6409–6412. https://doi.org/10.1021/ja01556a060
Article
CAS
Google Scholar
Drechsel EK (1957) Polymerization of cyclic carbamates. US patent no. 2,806,017
Ihata O, Kayaki Y, Ikariya T (2004) Synthesis of thermoresponsive polyurethane from 2-methylaziridine and supercritical carbon dioxide. Angew Chem Int Ed 43(6):717–719. https://doi.org/10.1002/anie.200352215
Article
CAS
Google Scholar
Marsini MA et al (2017) Development of a concise, scalable synthesis of a CCR1 antagonist utilizing a continuous flow Curtius rearrangement. Green Chem 19(6):1454–1461. https://doi.org/10.1039/c6gc03123d
Article
CAS
Google Scholar
Dai Y et al (2016) Tailoring of ammonia reduced graphene oxide into amine functionalized graphene quantum dots through a Hofmann rearrangement. RSC Adv 6(41):34514–34520. https://doi.org/10.1039/c6ra01587e
Article
CAS
Google Scholar
Strotman NA et al (2017) Revisiting a classic transformation: a lossen rearrangement initiated by nitriles and “pseudo-catalytic” in isocyanate. J Organ Chem 82(8):4044–4049. https://doi.org/10.1021/acs.joc.7b00450
Article
CAS
Google Scholar
Unverferth M et al (2013) Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols. Macromol Rapid Commun 34(19):1569–1574. https://doi.org/10.1002/marc.201300503
Article
CAS
PubMed
Google Scholar
Miao S et al (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10(4):1692–1704. https://doi.org/10.1016/j.actbio.2013.08.040
Article
CAS
Google Scholar
Miao S et al (2012) “Soybean oil-based polyurethane networks as candidate biomaterials: synthesis and biocompatibility. Eur J Lipid Sci Technol 114(10):1165–1174. https://doi.org/10.1002/ejlt.201200050
Article
CAS
Google Scholar
Ionescu M et al (2016) Highly functional polyols from castor oil for rigid polyurethanes. Eur Polym J 84:736–749. https://doi.org/10.1016/j.eurpolymj.2016.06.006
Article
CAS
Google Scholar
Rojek P, Prociak A (2012) Effect of different rapeseed-oil-based polyols on mechanical properties of flexible polyurethane foams. J Appl Polym Sci 125(4):2936–2945. https://doi.org/10.1002/app.36500
Article
CAS
Google Scholar
Zhou X, Sain MM, Oksman K (2016) Semi-rigid biopolyurethane foams based on palm-oil polyol and reinforced with cellulose nanocrystals. Compos A Appl Sci Manuf 83:56–62. https://doi.org/10.1016/j.compositesa.2015.06.008
Article
CAS
Google Scholar
Ng WS et al (2017) Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol. Ind Crops Prod 97:65–78. https://doi.org/10.1016/j.indcrop.2016.11.066
Article
CAS
Google Scholar
Gómez-Fernández S et al (2017) Properties of flexible polyurethane foams containing isocyanate functionalized kraft lignin. Ind Crops Prod 100:51–64. https://doi.org/10.1016/j.indcrop.2017.02.005
Article
CAS
Google Scholar
Das B et al (2013) Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Ind Crops Prod 44:396–404. https://doi.org/10.1016/j.indcrop.2012.11.028
Article
CAS
Google Scholar
Hu S, Wan C, Li Y (2012) Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Biores Technol 103(1):227–233. https://doi.org/10.1016/j.biortech.2011.09.125
Article
CAS
Google Scholar
Ertaş M, Fidan MS, Alma MH (2014) Preparation and characterization of biodegradable rigid polyurethane foams from the liquefied eucalyptus and pine woods. Wood Res Slovak 59(1):97–108
Google Scholar
Silva D, Ribeiro V et al (2013) Polyurethane foams based on modified tung oil and reinforced with rice husk ash I: synthesis and physical chemical characterization. Polym Test 32(2):438–445. https://doi.org/10.1016/j.polymertesting.2013.01.002
Article
CAS
Google Scholar
Kairytė A, Vėjelis S (2015) Evaluation of forming mixture composition impact on properties of water blown rigid polyurethane (PUR) foam from rapeseed oil polyol. Ind Crops Prod 66:210–215. https://doi.org/10.1016/j.polymertesting.2013.03.010
Article
CAS
Google Scholar
Hakim AA et al (2011) Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Mater Chem Phys 129(1):301–307. https://doi.org/10.1016/j.matchemphys.2011.04.008
Article
CAS
Google Scholar
Kong X, Liu G, Curtis JM (2012) Novel polyurethane produced from canola oil based poly (ether ester) polyols: synthesis, characterization and properties. Eur Polym J 48(12):2097–2106. https://doi.org/10.1016/j.eurpolymj.2012.08.012
Article
CAS
Google Scholar
Mahendran AR et al (2012) Bio-based non-isocyanate urethane derived from plant oil. J Polym Environ 20(4):926–931. https://doi.org/10.1007/s10924-012-0491-9
Article
CAS
Google Scholar
Fleischer M, Blattmann H, Mülhaupt R (2013) Glycerol-, pentaerythritol-and trimethylolpropane-based polyurethanes and their cellulose carbonate composites prepared via the non-isocyanate route with catalytic carbon dioxide fixation. Green Chem 15(4):934–942. https://doi.org/10.1039/c3gc00078h
Article
CAS
Google Scholar