Advances in the synthesis of non-isocyanate polyurethanes


Polyurethane (PU) is a most commonly used polymer for various application such as rigid and flexible foams, coatings etc. Also another class known as biodegradable PUs are used in specialized medical fields like soft-tissue engineering, regenerative medicine and also drug delivery systems, However, the degradation of the polyurethanes derived traditionally from general diisocyanates like 4,40-methylene diphenyl diisocyanate and toluene diisocyanate gives toxic products. Therefore, it is imperative to find an alternative route for the synthesis of PU which involves least or no toxic reagents. The consequently formed products are named non-isocyanate polyurethanes (NIPU). Recently, few alternative synthesis methods have been suggested by many researchers like a synthesis of polyhydroxyurethanes by polyaddition of diamines with cyclic carbonates. Such methods use functionalized vegetable oil as a biocompatible monomer which has led to a new range of biodegradable, renewable and sustainable source for NIPUs. Use of cyclocarbonates class of compounds has shown potential in the preparation of green PUs. Self-polycondensation reactions between AB-type fatty monomers bearing acyl azide and hydroxyl functionalities will take part. Here, the isocyanate group formation takes place in situ via Curtius rearrangement. The only disadvantage of this method is that the acyl azide groups are obtained by the harmful reaction of sodium azide with carboxylic acids. Bio-renewable sources represent a rich source of precursors for the synthesis of polyols and polyisocyanates. Many such sustainable routes for the synthesis of NIPUs reported in the literature are presented in the following article.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8





4,4,0-Methylene diphenyl diisocyanate


Toluene diisocyanate




Carcinogenic, mutagen, reprotoxic


Non-isocyanate polyurethanes


Hybrid non-isocyanate polyurethanes




Trimethylolpropane glycidyl ether


Ethoxylated trimethylolpropane glycidyl ether


  1. 1.

    Bayer O (1947) Das di-isocyanat-polyadditionsverfahren (polyurethane). Angew Chem 59(9):257–272.

    Article  Google Scholar 

  2. 2.

    Seymour RB, Kauffman GB (1992) Polyurethanes: a class of modern versatile materials. J Chem Educ 69(11):909.

    Article  CAS  Google Scholar 

  3. 3.

    Boiteux G, Cuvé L, Pascault J-P (1994) Synthesis and properties of polyurethanes based on polyolefin: 3. Monitoring of phase separation by dielectric relaxation spectroscopy of segmented semicrystalline polyurethane prepared in bulk by the use of emulsifiers. Polymer 35(1):173–178.

    Article  CAS  Google Scholar 

  4. 4.

    Saunders JH, Slocombe RJ (1948) The chemistry of the organic isocyanates. Chem Rev 43(2):203–218.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Figovsky O et al (2016) Environment friendly polyurethanes: nonisocyanate synthesis. Zhurnal Al’tern Energ Ekol (Rus) 23–24:52–87

    Google Scholar 

  6. 6.

    Rokicki G, Parzuchowski PG, Mazurek M (2015) Non-isocyanate polyurethanes: synthesis, properties, and applications. Polym Adv Technol 26(7):707–761.

    Article  CAS  Google Scholar 

  7. 7.

    PlasticsEurope (2016) Plastics—the facts 2016: an analysis of European plastics production, Demand and Waste Data (PlasticsEurope)

  8. 8.

    Blattmann H, Lauth M, Mülhaupt R (2016) Flexible and bio-based nonisocyanate polyurethane (NIPU) foams. Macromol Mater Eng 301(8):944–952.

    Article  CAS  Google Scholar 

  9. 9.

    Boujard C, Foray N, Caudron JC (2014) Panorama du marché du polyuréthane et état de l’art de ses techniques de recyclages. Report 1202C0079, ADEME

  10. 10.

    Segura DM et al (2005) Chemistry of polyurethane adhesives and sealants. Handb Adhes Sealants 1:101–162.

    Article  Google Scholar 

  11. 11.

    Kiester E et al (2007) An incomplete history of world war I. 1. Murdoch Books, p 74. ISBN 1-74045-970-9

  12. 12.

    Schneider W, Diller W (2000) Phosgene. Ullmann’s Encycl Ind Chem.

    Article  Google Scholar 

  13. 13.

    Baur X et al (1994) Respiratory and other hazards of isocyanates. Int Arch Occup Environ Health 66(3):141–152.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Kathalewar MS et al (2013) Non-isocyanate polyurethanes: from chemistry to applications. RSC Adv 3(13):4110–4129.

    Article  CAS  Google Scholar 

  15. 15.

    North M, Pasquale R (2009) Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew Chem 121(16):2990–2992.

    Article  Google Scholar 

  16. 16.

    Włoch M, Datta J (2017) Nonisocyanate polyurethanes. Polyurethane Polym.

    Article  Google Scholar 

  17. 17.

    Goodrich P et al (2017) Sustainable cyclic carbonate production, utilizing carbon dioxide and azolate ionic liquids. ACS Sustain Chem Eng.

    Article  Google Scholar 

  18. 18.

    Datta J, Włoch M (2016) Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di-or polyamines in the context of structure–properties relationship and from an environmental point of view. Polym Bull 73(5):1459–1496.

    Article  CAS  Google Scholar 

  19. 19.

    Javni I, Hong DP, Petrović ZS (2013) Polyurethanes from soybean oil, aromatic, and cycloaliphatic diamines by nonisocyanate route. J Appl Polym Sci 128(1):566–571.

    Article  CAS  Google Scholar 

  20. 20.

    Schmidt S et al (2017) Erythritol dicarbonate as intermediate for solvent-and isocyanate-free tailoring of bio-based polyhydroxyurethane thermoplastics and thermoplastic elastomers. Macromolecules 50(6):2296–2303.

    Article  CAS  Google Scholar 

  21. 21.

    Schimpf V et al (2017) High purity limonene dicarbonate as versatile building block for sustainable non-isocyanate polyhydroxyurethane thermosets and thermoplastics. Macromolecules 50(3):944–955.

    Article  CAS  Google Scholar 

  22. 22.

    Nowick JS et al (1992) An improved method for the synthesis of enantiomerically pure amino acid ester isocyanates. J Organ Chem 57(26):7364–7366.

    Article  CAS  Google Scholar 

  23. 23.

    Ozaki S (1972) Recent advances in isocyanate chemistry. Chem Rev 72(5):457–496.

    Article  Google Scholar 

  24. 24.

    Paul F (2000) Catalytic synthesis of isocyanates or carbamates from nitroaromatics using group VIII transition metal catalysts. Coord Chem Rev 203(1):269–323.

    Article  CAS  Google Scholar 

  25. 25.

    Shi F, Deng Y (2002) Polymer-immobilized gold catalysts for the efficient and clean syntheses of carbamates and symmetric ureas by oxidative carbonylation of aniline and its derivatives. J Catal 211(2):548–551.

    CAS  Article  Google Scholar 

  26. 26.

    Chaturvedi D (2012) Perspectives on the synthesis of organic carbamates. Tetrahedron 68(1):15–45.

    Article  CAS  Google Scholar 

  27. 27.

    Chen Z et al (2017) Poly(urethane–carbonate) s from carbon dioxide. Macromolecules 50(6):2320–2328.

    Article  CAS  Google Scholar 

  28. 28.

    Hall HK Jr, Schneider AK (1958) Polymerization of cyclic esters, urethans, ureas and imides. J Am Chem Soc 80(23):6409–6412.

    Article  CAS  Google Scholar 

  29. 29.

    Drechsel EK (1957) Polymerization of cyclic carbamates. US patent no. 2,806,017

  30. 30.

    Ihata O, Kayaki Y, Ikariya T (2004) Synthesis of thermoresponsive polyurethane from 2-methylaziridine and supercritical carbon dioxide. Angew Chem Int Ed 43(6):717–719.

    Article  CAS  Google Scholar 

  31. 31.

    Marsini MA et al (2017) Development of a concise, scalable synthesis of a CCR1 antagonist utilizing a continuous flow Curtius rearrangement. Green Chem 19(6):1454–1461.

    Article  CAS  Google Scholar 

  32. 32.

    Dai Y et al (2016) Tailoring of ammonia reduced graphene oxide into amine functionalized graphene quantum dots through a Hofmann rearrangement. RSC Adv 6(41):34514–34520.

    Article  CAS  Google Scholar 

  33. 33.

    Strotman NA et al (2017) Revisiting a classic transformation: a lossen rearrangement initiated by nitriles and “pseudo-catalytic” in isocyanate. J Organ Chem 82(8):4044–4049.

    Article  CAS  Google Scholar 

  34. 34.

    Unverferth M et al (2013) Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols. Macromol Rapid Commun 34(19):1569–1574.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Miao S et al (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10(4):1692–1704.

    Article  CAS  Google Scholar 

  36. 36.

    Miao S et al (2012) “Soybean oil-based polyurethane networks as candidate biomaterials: synthesis and biocompatibility. Eur J Lipid Sci Technol 114(10):1165–1174.

    Article  CAS  Google Scholar 

  37. 37.

    Ionescu M et al (2016) Highly functional polyols from castor oil for rigid polyurethanes. Eur Polym J 84:736–749.

    Article  CAS  Google Scholar 

  38. 38.

    Rojek P, Prociak A (2012) Effect of different rapeseed-oil-based polyols on mechanical properties of flexible polyurethane foams. J Appl Polym Sci 125(4):2936–2945.

    Article  CAS  Google Scholar 

  39. 39.

    Zhou X, Sain MM, Oksman K (2016) Semi-rigid biopolyurethane foams based on palm-oil polyol and reinforced with cellulose nanocrystals. Compos A Appl Sci Manuf 83:56–62.

    Article  CAS  Google Scholar 

  40. 40.

    Ng WS et al (2017) Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol. Ind Crops Prod 97:65–78.

    Article  CAS  Google Scholar 

  41. 41.

    Gómez-Fernández S et al (2017) Properties of flexible polyurethane foams containing isocyanate functionalized kraft lignin. Ind Crops Prod 100:51–64.

    Article  CAS  Google Scholar 

  42. 42.

    Das B et al (2013) Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Ind Crops Prod 44:396–404.

    Article  CAS  Google Scholar 

  43. 43.

    Hu S, Wan C, Li Y (2012) Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Biores Technol 103(1):227–233.

    Article  CAS  Google Scholar 

  44. 44.

    Ertaş M, Fidan MS, Alma MH (2014) Preparation and characterization of biodegradable rigid polyurethane foams from the liquefied eucalyptus and pine woods. Wood Res Slovak 59(1):97–108

    Google Scholar 

  45. 45.

    Silva D, Ribeiro V et al (2013) Polyurethane foams based on modified tung oil and reinforced with rice husk ash I: synthesis and physical chemical characterization. Polym Test 32(2):438–445.

    Article  CAS  Google Scholar 

  46. 46.

    Kairytė A, Vėjelis S (2015) Evaluation of forming mixture composition impact on properties of water blown rigid polyurethane (PUR) foam from rapeseed oil polyol. Ind Crops Prod 66:210–215.

    Article  CAS  Google Scholar 

  47. 47.

    Hakim AA et al (2011) Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Mater Chem Phys 129(1):301–307.

    Article  CAS  Google Scholar 

  48. 48.

    Kong X, Liu G, Curtis JM (2012) Novel polyurethane produced from canola oil based poly (ether ester) polyols: synthesis, characterization and properties. Eur Polym J 48(12):2097–2106.

    Article  CAS  Google Scholar 

  49. 49.

    Mahendran AR et al (2012) Bio-based non-isocyanate urethane derived from plant oil. J Polym Environ 20(4):926–931.

    Article  CAS  Google Scholar 

  50. 50.

    Fleischer M, Blattmann H, Mülhaupt R (2013) Glycerol-, pentaerythritol-and trimethylolpropane-based polyurethanes and their cellulose carbonate composites prepared via the non-isocyanate route with catalytic carbon dioxide fixation. Green Chem 15(4):934–942.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yogesh Suryawanshi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suryawanshi, Y., Sanap, P. & Wani, V. Advances in the synthesis of non-isocyanate polyurethanes. Polym. Bull. 76, 3233–3246 (2019).

Download citation


  • Polyurethane
  • Non-isocyanate polyurethane
  • Isocyanates
  • Polyhydroxyurethanes
  • Cyclocarbonates
  • Transurethanization