Skip to main content
Log in

Effect of solid-state polycondensation on crystalline structure and mechanical properties of recycled polyethylene-terephthalate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Solid-state polycondensation process of recycled polyethylene-terephthalate and its effect on crystalline structure and mechanical properties were investigated. A three-phase morphological model was applied for the evaluation of crystalline structure, while mechanical properties were determined by dynamic mechanical analysis. The effect of solid-state polycondensation process on morphology was investigated and described in detail. A new method was used to analyze the effect of solid-state polycondensation process on mechanical properties. Relationship was found between evolved crystalline structure and storage modulus of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Welle F (2011) Twenty years of PET bottle to bottle recycling—an overview. Resour Conserv Recy 55:865–875. https://doi.org/10.1016/j.resconrec.2011.04.009

    Article  Google Scholar 

  2. Welle F (2014) Simulation of the decontamination efficiency of PET recycling processes based on solid-state polycondensation. Packag Technol Sci 27:141–148. https://doi.org/10.1002/pts.2013

    Article  CAS  Google Scholar 

  3. Issam AM, Hena S, Khizrien AKN (2012) A new unsaturated poly(ester-urethane) based on terephthalic acid derived from polyethylene terephthalate (PET) of waste bottles. J Polym Envirom 20:469–476. https://doi.org/10.1007/s10924-011-0407-0

    Article  CAS  Google Scholar 

  4. Ronkay F, Molnar B, Dogossy G (2017) The effect of mold temperature on chemical foaming of injection molded recycled polyethylene-terephthalate. Thermochim Acta 651:65–72. https://doi.org/10.1016/j.tca.2017.02.013

    Article  CAS  Google Scholar 

  5. Badia JD, Strömberg E, Karlsson S, Ribes-Greus A (2012) The role of crystalline, mobile amorphous rigid amorphous fractions in the performance of recycled poly (ethylene terephthalate) (PET). Polym Degrad Stabil 97:98–107. https://doi.org/10.1016/j.polymdegradstab.2011.10.008

    Article  CAS  Google Scholar 

  6. Kao CY, Cheng WH, Wan BZ (1998) Investigation of alkaline hydrolysis of polyethylene terephthalate by differential scanning calorimetry and thermogravimetric analysis. J Appl Polym Sci 70:1939–1945. https://doi.org/10.1002/(SICI)1097-4628(19981205)70:10%3C1939::AID-APP8%3E3.0.CO;2-G

    Article  CAS  Google Scholar 

  7. Paci M, Mantia FPL (1999) Influence of small amounts of polyvinylchloride on the recycling of polyethyleneterephthalate. Polym Degrad Stabil 63:11–14. https://doi.org/10.1016/S0141-3910(98)00053-6

    Article  CAS  Google Scholar 

  8. Assadi R, Colin X, Verdu J (2004) Irreversible structural changes during PET recycling by extrusion. Polymer 45:4403–4412. https://doi.org/10.1016/j.polymer.2004.04.029

    Article  CAS  Google Scholar 

  9. Zhao HB, Wang XL, Guan Y, Wang XL, Chen L, Wang YZ (2015) Block self-cross-linkable poly(ethylene terephthalate) copolyester via solid-state polymerization: crystallization, cross-linking, and flame retardance. Polymer 70:68–76. https://doi.org/10.1016/j.polymer.2015.06.012

    Article  CAS  Google Scholar 

  10. Karayannidis GP, Psalida EA (2000) Chain extension of recycled poly(ethylene terephthalate) with 2,2′-(1,4-phenylene)bis(2-oxazoline). J Appl Polym Sci 77:2206–2211. https://doi.org/10.1002/1097-4628(20000906)77:10%3C2206::AID-APP14%3E3.0.CO;2-D

    Article  CAS  Google Scholar 

  11. Raffa P, Coltelli MB, Savi S, Bianchi S, Castelvetro V (2012) Chain extension and branching of poly(ethylene terephthalate) (PET) with di-multifunctional epoxy or isocyanate additives: an experimental and modelling study. React Funct Polym 72:50–60. https://doi.org/10.1016/j.reactfunctpolym.2011.10.007

    Article  CAS  Google Scholar 

  12. Nascimento CR, Azuma C, Bretas R, Farah M, Dias ML (2010) Chain extension reaction in solid-state polymerization of recycled PET: the influence of 2,2′-bis-2-oxazoline and pyromellitic anhydride. J Appl Polym Sci 115:3177–3188. https://doi.org/10.1002/app.31400

    Article  CAS  Google Scholar 

  13. Rafler G, Reinisch G, Bonatz E, Versaumer H, Gajewski H, Sparing HD, Stein K, Mühlhaus C (1985) Kinetics of mass transfer in the melt polycondensation of poly(ethylene terephthalate). J Macromol Sci Chem 22:1413–1427. https://doi.org/10.1080/00222338508063344

    Article  Google Scholar 

  14. Cheong SI, Choi KY (1995) Melt polycondensation of poly(ethylene terephthalate) in a rotating disk reactor. J Appl Polym Sci 58:1473–1483. https://doi.org/10.1002/app.1995.070580908

    Article  CAS  Google Scholar 

  15. Zhong H, Xi Z, Liu T, Xu Z, Zhao L (2013) Integrated process of supercritical CO2-assisted melt polycondensation modification and foaming of poly(ethylene terephthalate). J Supercrit Fluids 74:70–79. https://doi.org/10.1016/j.supflu.2012.11.019

    Article  CAS  Google Scholar 

  16. Karayannidis GP, Kokkalas DE, Bikiaris DN (1993) Solid-state polycondensation of poly(ethylene terephthalate) recycled from postconsumer soft-drink bottles. I. J Appl Polym Sci 50:2135–2142. https://doi.org/10.1002/app.1993.070501213

    Article  CAS  Google Scholar 

  17. Zhao J, Xiao H, Qiu G, Zhang Y, Huang N, Tang Z (2005) Solid-state polycondensation of poly(ethylene terephthalate) modified with isophthalic acid: kinetics and simulation. Polymer 46:7309–7316. https://doi.org/10.1016/j.polymer.2005.05.090

    Article  CAS  Google Scholar 

  18. Zhi-Lian T, Gao Q, Nan-Xun H, Sironi C (1995) Solid-state polycondensation of poly(ethylene terephthalate): kinetics and mechanism. J Appl Polym Sci 57:473–485. https://doi.org/10.1002/app.1995.070570409

    Article  Google Scholar 

  19. Scheirs J, Long TA (2003) Modern polyesters: chemistry and technology of polyesters and copolyesters. Wiley, New Jersey. https://doi.org/10.1002/0470090685

    Book  Google Scholar 

  20. Mallon F, Beers K, Ives A, Ray H (1998) The effect of the type of purge gas on the solid-state polymerization of polyethylene terephthalate. J Appl Polym Sci 69:1789–1791. https://doi.org/10.1002/(SICI)1097-4628(19980829)69:9%3C1789::AID-APP13%3E3.0.CO;2-H

    Article  CAS  Google Scholar 

  21. Duh B (2006) Effects of crystallinity on solid-state polymerization of poly(ethylene terephthalate). J Appl Polym Sci 102:623–632. https://doi.org/10.1002/app.24406

    Article  CAS  Google Scholar 

  22. Wang XQ, Deng DC (2002) A comprehensive model for solid state polycondensation of poly(ethylene terephthalate): combining kinetics with crystallization and diffusion of acetaldehyde. J Appl Polym Sci 83:3133–3144. https://doi.org/10.1002/app.10113

    Article  CAS  Google Scholar 

  23. Bikiaris DN, Achillas DS, Giliopoulos DJ, Karayannidis GP (2006) Effect of activated carbon black nanoparticles on solid state polymerization of poly(ethylene terephthalate). Eur Polym J 42:3190–3201. https://doi.org/10.1016/j.eurpolymj.2006.07.027

    Article  CAS  Google Scholar 

  24. Yu H, Han K, Yu M (2004) The rate acceleration in solid state polycondensation of PET by nanomaterials. J Appl Polym Sci 94:971–976. https://doi.org/10.1002/app.20888

    Article  CAS  Google Scholar 

  25. Achilias DS, Karandrea E, Triantafyllidis KS, Ladavos A, Bikiaris DN (2015) Effect of organoclays type on the solid-state polymerization (SSP) of poly(ethylene terephthalate): experimental and modeling. Eur Polym J 63:156–167. https://doi.org/10.1016/j.eurpolymj.2014.12.027

    Article  CAS  Google Scholar 

  26. Duh B (2002) Effect of antimony catalyst on solid-state polycondensation of poly(ethylene terephthalate). Polymer 43:3147–3154. https://doi.org/10.1016/S0032-3861(02)00138-6

    Article  CAS  Google Scholar 

  27. Mendes LC, Pereira PSC (2013) Solid state polymerization: its action on thermal and rheological properties of PET/PC reactive blends. Polimeros 23:298–304. https://doi.org/10.1590/0104-1428.1518

    Article  CAS  Google Scholar 

  28. Dini M, Carreau PJ, Kamal MR, Ton-That M-T, Esmaeili B (2014) Solid-state polymerization of poly(ethylene terephthalate): effect of organoclay concentration. Polym Eng Sci 54:2925–2934. https://doi.org/10.1002/pen.23853

    Article  CAS  Google Scholar 

  29. Cruz SA, Zanin M (2006) PET recycling: evaluation of the solid state polymerization process. J Appl Polym Sci 99:2117–2123. https://doi.org/10.1002/app.22526

    Article  CAS  Google Scholar 

  30. Torres N, Robin JJ, Boutevin B (2000) Study of thermal and mechanical properties of virgin and recycled poly(ethylene terephthalate) before and after injection molding. Eur Polym J 36:2075–2080. https://doi.org/10.1016/S0014-3057(99)00301-8

    Article  CAS  Google Scholar 

  31. Karayannidis GP, Kokkalas DE, Bikiaris DN (1995) Solid-State polycondensation of poly(ethylene terephthalate) recycled from postconsumer soft-drink bottles. II. J Appl Polym Sci 56:405–410. https://doi.org/10.1002/app.1995.070560311

    Article  CAS  Google Scholar 

  32. Agrawal AK, Mhaisgawali VT (2006) Post-extrusion solid-state polymerization of fully drawn polyester yarns. J Appl Polym Sci 102:5113–5122. https://doi.org/10.1002/app.24436

    Article  CAS  Google Scholar 

  33. Wunderlich B (2003) Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28:383–450. https://doi.org/10.1016/s0079-6700(02)00085-0

    Article  CAS  Google Scholar 

  34. Rastogi R, Vellinga WP, Rastogi S, Schick C, Meijer HEH (2004) The three-phase structure and mechanical properties of poly(ethylene terephthalate). J Polym Sci Polym Phys 42:2092–2106. https://doi.org/10.1002/polb.20096

    Article  CAS  Google Scholar 

  35. Molnar B, Ronkay F (2017) Time dependence of morphology and mechanical properties of injection moulded recycled poly(ethylene-terephthalate). Int Polym Process 32:203–208. https://doi.org/10.3139/217.3307

    Article  CAS  Google Scholar 

  36. Ehrenstein GW, Riedel G, Trawiel P (2004) Thermal analysis of plastics. Hanser Publisher, Munich. https://doi.org/10.3139/9783446434141

    Book  Google Scholar 

Download references

Acknowledgements

This research was realized in the frames of TÁMOP 4.2.4. A/1-11-1-2012-0001: “National Excellence Program—Elaborating and operating an inland student and researcher personal support system.” The project was subsidized by the European Union and co-financed by the European Social Fund. The infrastructure of the research project was supported by the Hungarian Scientific Research Fund (OTKA K109224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Ronkay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molnar, B., Ronkay, F. Effect of solid-state polycondensation on crystalline structure and mechanical properties of recycled polyethylene-terephthalate. Polym. Bull. 76, 2387–2398 (2019). https://doi.org/10.1007/s00289-018-2504-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2504-x

Keywords

Navigation