Skip to main content

Advertisement

Log in

Development of antituberculosis melt-blown polypropylene filters coated with mangosteen extracts for medical face mask applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The aim of this article was to develop a three-layer mask, which was made of a polypropylene filter containing mangosteen extract by spray-coating technique in order to enhance antibacterial and antituberculosis activities. The bacterial filtration efficiency was performed by spraying the biological aerosol through the filters. Breathability of face masks was also measured as a pressure drop parameters. The physical properties of filters were evaluated in terms of surface morphology and water contact angle. The coated filters were then challenged with multidrug-resistant tuberculosis, Staphylococcus aureus and Escherichia coli as the representative bacteria. The results showed that the increase in the mangosteen extract concentration for coating caused fiber diameter, hydrophilicity, % BFE (> 95%) and pressure drop of filters to be also increased. Investigation into release characteristic of mangosteen extract-coated polypropylene filters exhibited initial burst release after 60 min of immersion in a phosphate buffer solution. The coated filter exhibited good antibacterial performances against three types of pathogens. An in vitro cytotoxic test showed that 2% and 5% w/v mangosteen extract-coated polypropylene filters were not toxic by an indirect cytotoxicity test using L929 mouse fibroblast cells. This study demonstrated that the filters coated with mangosteen extract significantly play an important role in achieving antibacterial face mask.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balazy A, Toivola M, Adhikari A, Sivasubramani SK, Reponen T, Grinshpun SA (2006) Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks. Am J Infect Control 34:51–57. https://doi.org/10.1016/j.ajic.2005.08.018

    Article  PubMed  Google Scholar 

  2. Carducci A, Verani M, Lombardi R, Casini B, Privitera GJ (2011) Environmental survey to assess viral contamination of air and surfaces in hospital settings. Hosp Infect 77:242–247. https://doi.org/10.1016/j.jhin.2010.10.010

    Article  CAS  Google Scholar 

  3. Diaz KT, Smaldoneb GC (2010) Quantifying exposure risk: surgical masks and respirators. Am J Infect Control 38:501–508. https://doi.org/10.1016/j.ajic.2010.06.002

    Article  PubMed  Google Scholar 

  4. Jayprakash Y, Awanish K, Pawan M, Ajay KG, Hotam SC, Pramad KY, Hariom Y, Pramod K (2015) Distribution of airborne microbes and antibiotic susceptibility pattern of bacteria during Gwalior trade fair, Central India. J Formos Med Assoc 114:639–646. https://doi.org/10.1016/j.jfma.2013.04.006

    Article  CAS  Google Scholar 

  5. Muñoz-Bonilla A, Fernández-García M (2015) The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. Eur Polym J 65:46–62. https://doi.org/10.1016/j.eurpolymj.2015.01.030

    Article  CAS  Google Scholar 

  6. Jung JH, Hwang GB, Lee JE, Bae GN (2011) Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir 16:10256–10264. https://doi.org/10.1021/la201851r

    Article  CAS  Google Scholar 

  7. Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A 289:105–109. https://doi.org/10.1016/j.colsurfa.2006.04.012

    Article  CAS  Google Scholar 

  8. Shateri Khalil-Abad M, Yazdanshenas MEJ (2010) Superhydrophobic antibacterial cotton textiles. Colloid Interface Sci 351:293–298. https://doi.org/10.1016/j.jcis.2010.07.049

    Article  CAS  Google Scholar 

  9. Xue CH, Chen J, Yin W, Jia ST, Ma JZ (2012) Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci 258:2468–2472. https://doi.org/10.1016/j.apsusc.2011.10.074

    Article  CAS  Google Scholar 

  10. Tiliket G, Le Sage D, Moules V, Rosa-Calatrava M, Lina B, Valleton JM, Nguyen QT, Lebrun L (2011) A new material for airborne virus filtration. Chem Eng J 173:341–351. https://doi.org/10.1016/j.cej.2011.07.059

    Article  CAS  Google Scholar 

  11. Alonso D, Gimeno M, Olayo R, Vázquez-Torres H, Sepúlveda-Sánchez JD, Shirai K (2009) Cross-linking chitosan into UV-irradiated cellulose fibers for the preparation of antimicrobial-finished textiles. Carbohydr Polym 77:536–543. https://doi.org/10.1016/j.carbpol.2009.01.027

    Article  CAS  Google Scholar 

  12. Li G, Liu H, Zhao H, Gao Y, Wang J, Jiang H, Boughton RIJ (2011) Chemical assembly of TiO2 and TiO2@Ag nanoparticles on silk fiber to produce multifunctional fabrics. Colloid Interface Sci 358:307–315. https://doi.org/10.1016/j.jcis.2011.02.053

    Article  CAS  Google Scholar 

  13. Lim SH, Hudson SM (2004) Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydr Polym 56:227–234. https://doi.org/10.1016/j.carbpol.2004.02.005

    Article  CAS  Google Scholar 

  14. Wang J, Cai Z (2008) Incorporation of the antibacterial agent, miconazole nitrate into a cellulosic fabric grafted with β-cyclodextrin. Carbohydr Polym 72:695–700. https://doi.org/10.1016/j.carbpol.2007.10.019

    Article  CAS  Google Scholar 

  15. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3:113–126. https://doi.org/10.1016/S1466-8564(02)00012-7

    Article  CAS  Google Scholar 

  16. Kaali P, Strömberg E, Aune RE, Czél G, Momcilovic D, Karlsson S (2010) Antimicrobial properties of Ag + loaded zeolite polyester polyurethane and silicone rubber and long-term properties after exposure to in vitro ageing. Polym Degrad Stab 95:1456–1465. https://doi.org/10.1016/j.polymdegradstab.2010.06.024

    Article  CAS  Google Scholar 

  17. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 8:37–45. https://doi.org/10.1016/j.nano.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  18. Kwok CS, Horbett TA, Ratner BDJ (1999) Design of infection-resistant antibiotic-releasing polymers: II. Controlled release of antibiotics through a plasma-deposited thin film barrier. Control Release 62:301–311. https://doi.org/10.1016/S0168-3659(99)00105-4

    Article  CAS  Google Scholar 

  19. Kwok CS, Wan C, Hendricks S, Bryers JDJ (1999) Design of infection-resistant antibiotic-releasing polymers: I. Fabrication and formulation. Control Release 62:289–299. https://doi.org/10.1016/S0168-3659(99)00106-6

    Article  CAS  Google Scholar 

  20. Muñoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37:281–339. https://doi.org/10.1016/j.progpolymsci.2011.08.005

    Article  CAS  Google Scholar 

  21. Kandelbauer A, Widsten P (2009) Antibacterial melamine resin surfaces for wood-based furniture and flooring. Prog Org Coat 65:305–313. https://doi.org/10.1016/j.porgcoat.2008.12.003

    Article  CAS  Google Scholar 

  22. Yang B, Ying GG, Zhao JL, Zhang LJ, Fang YX, Nghiem LDJ (2011) Oxidation of triclosan by ferrate: reaction kinetics, products identification and toxicity evaluation. Hazard Mater 186:227–235. https://doi.org/10.1016/j.jhazmat.2010.10.106

    Article  CAS  Google Scholar 

  23. Eui-seok C, Gi BH, Chu WN, Bo MK, Jung EL, SungChul S, Gwi-Nam B, Jae HJ (2013) Antimicrobial durability of air filters coated with airborne Sophora flavescens nanoparticles. Sci Total Environ 444:110–114. https://doi.org/10.1016/j.scitotenv.2012.11.075

    Article  CAS  Google Scholar 

  24. Jae HJ, Jung EL, Gwi-Nam B (2013) Use of electrosprayed Sophora flavescens natural-product nanoparticles for antimicrobial air filtration. J Aerosol Sci 57:185–193. https://doi.org/10.1016/j.jaerosci.2012.09.004

    Article  CAS  Google Scholar 

  25. Kyoung Mi S, Kyung HK, Gi BH, SungChul S, Gwi-Nam B, Jae HJ (2015) Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles. Sci Total Environ 493:291–297. https://doi.org/10.1016/j.scitotenv.2014.06.002

    Article  CAS  Google Scholar 

  26. Priya V, Jainu M, Mohan SK, Saraswati P, Gopan CS (2010) Antimicrobial activity of pericarp extract of Garcinia mangostana linn. IJPSR 1:278–281

    Google Scholar 

  27. Gopalakrishnan G, Banumathi B, Suresh GJ (1997) Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives. Nat Prod 60:519–524. https://doi.org/10.1021/np970165u

    Article  CAS  Google Scholar 

  28. Yu L, Zhao M, Yang B, Zhao Q, Jiang Y (2007) Phenolics from hull of Garcinia mangostana fruit and their antioxidant activities. Food Chem 104:176–181. https://doi.org/10.1016/j.foodchem.2006.11.018

    Article  CAS  Google Scholar 

  29. Elfita E, Muharni M, Latief M, Darwati D, Widiyantoro A, Supriyatna S, Bahti HH, Dachriyanus D, Cos P, Maes L, Foubert K, Apers S, Pieters L (2009) Antiplasmodial and other constituents from four Indonesian Garcinia spp. Phytochemistry 70:907–912. https://doi.org/10.1016/j.phytochem.2009.04.024

    Article  CAS  PubMed  Google Scholar 

  30. Ajayi IA, Oderinde RA, Ogunkoya BO, Egunyomi A, Taiwo VO (2007) Chemical analysis and preliminary toxicological evaluation of Garcinia mangostana seeds and seed oil. Food Chem 101:999–1004. https://doi.org/10.1016/j.foodchem.2006.02.053

    Article  CAS  Google Scholar 

  31. Arunrattiyakorn P, Suksamrarn S, Suwannasai N, Kanzaki H (2001) Microbial metabolism of α-mangostin isolated from Garcinia mangostana L. Phytochemistry 72:730–734. https://doi.org/10.1016/j.phytochem.2011.02.007

    Article  CAS  Google Scholar 

  32. Pedraza-Chaverri J, Cárdenas-Rodríguez N, Orozco-Ibarra M, Pérez-Rojas JM (2008) Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol 46:3227–3239. https://doi.org/10.1016/j.fct.2008.07.024

    Article  CAS  PubMed  Google Scholar 

  33. Gale GA, Kirtikara K, Pittayakhajonwut P, Sivichai S, Thebtaranonth Y, Thongpanchang C, Vichai V (2007) In search of cyclooxygenase inhibitors, anti-Mycobacterium tuberculosis and anti-malarial drugs from Thai flora and microbes. Pharmacol Ther 115:307–351. https://doi.org/10.1016/j.pharmthera.2007.03.016

    Article  CAS  PubMed  Google Scholar 

  34. García A, Bocanegra-García V, Palma-Nicolás JP, Rivera G (2012) Recent advances in antitubercular natural products. Eur J Med Chem 49:1–23. https://doi.org/10.1016/j.ejmech.2011.12.029

    Article  CAS  PubMed  Google Scholar 

  35. Koh JJ, Qiu S, Zou H, Lakshminarayanan R, Li J, Zhou X, Tang C, Sarawathi P, Verma C, Tan DTH, Tan AL, Liu S, Beuerman RW (2013) Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim Biophys Acta 1828:834–844. https://doi.org/10.1016/j.bbamem.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  36. Chaivisuthangkura A, Malaikaew Y, Chaovanalikit A, Jaratrungtawee A, Panseeta P, Ratananukul P, Suksamrarn S (2009) Prenylated xanthone composition of Garcinia mangostana (Mangosteen) fruit hull. Chromatographia 69:315–318. https://doi.org/10.1365/s10337-008-0890-1

    Article  CAS  Google Scholar 

  37. Li W, Garmendia N, de Larraya UP, Ding Y, Detsch R, Grünewald A, Roether JA, Schubert DW, Boccaccini AR (2014) 45S5 bioactive glass-based scaffolds coated with cellulose nanowhiskers for bone tissue engineering. RSC Adv 4:56156–56164. https://doi.org/10.1039/c4ra07740g

    Article  CAS  Google Scholar 

  38. Qiu Li L, Cleo C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B 19:485–502. https://doi.org/10.1089/ten.teb.2012.0437

    Article  CAS  Google Scholar 

  39. Hamdi J, Nadia B, Christiane W-K, Dimitri L, Frédéric R, Jean-Nicolas M, Michel N (2018) Influence of the grade on the variability of the mechanical properties of polypropylene waste. Waste Manag 75:160–179. https://doi.org/10.1016/j.wasman.2018.02.006

    Article  CAS  Google Scholar 

  40. Sikareepaisan P, Ruktanonchai U, Supaphol P (2011) Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydr Polym 83:1457–1469. https://doi.org/10.1016/j.carbpol.2010.09.048

    Article  CAS  Google Scholar 

  41. Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P (2013) Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 452:333–343. https://doi.org/10.1016/j.ijpharm.2013.05.012

    Article  CAS  PubMed  Google Scholar 

  42. Ming-Ju W, Yun-Shu F, Wen-Pei S, Surampalli R (2011) Quantification and analysis of airborne bacterial characteristics in a nursing care institution. J Air Waste Manag Assoc 61:732–739. https://doi.org/10.3155/1047-3289.61.7.732

    Article  CAS  Google Scholar 

  43. Patanaik A, Jacobs V, Anandjiwala RD (2010) Performance evaluation of electrospun nanofibrous membrane. J Membr Sci 352:136–142. https://doi.org/10.1016/j.memsci.2010.02.009

    Article  CAS  Google Scholar 

  44. Viscusi DJ, Bergman M, Sinkule E, Shaffer RE (2009) Evaluation of the filtration performance of 21 N95 filtering face piece respirators after prolonged storage. Am J Infect Control 37:381–386. https://doi.org/10.1016/j.ajic.2008.09.021

    Article  PubMed  Google Scholar 

  45. Injury Montali A (2006) Antibacterial coating systems. INJURY J. https://doi.org/10.1016/j.injury.2006.04.013

    Article  Google Scholar 

  46. Hemaiswarya S, Kruthiventi AK, Doble M (2008) Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 15:639–652. https://doi.org/10.1016/j.phymed.2008.06.008

    Article  CAS  Google Scholar 

  47. Chuysinuan P, Techasakul S, Suksamrarn S, Wetprasit N, Hongmanee P, Supaphol P (2017) Preparation and characterization of electrospun polyacrylonitrile fiber mats containing Garcinia mangostana. Polym Bull 75:1311–1327. https://doi.org/10.1007/s00289-017-2087-y

    Article  CAS  Google Scholar 

  48. Andersen BM, Syversen G, Thoresen H, Rasch M, Hochlin K, Seljordslia B, Snevold I, Berg EJ (2010) Failure of dry mist of hydrogen peroxide 5% to kill Mycobacterium tuberculosis. Hosp Infect 76:80–83. https://doi.org/10.1016/j.jhin.2010.03.013

    Article  CAS  Google Scholar 

  49. Jarlier V, Nikaido H (1994) Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 123:11–18. https://doi.org/10.1016/0378-1097(94)90267-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by (1) Rachadapisek Sompote Fund for Postdoctoral Fellowship, Chulalongkorn University, (2) Research Pyramid, Ratchadaphiseksomphot Endowment Fund (GCURP_58_02_63_01) of Chulalongkorn University, (3) the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund, (4) The Petroleum and Petrochemical College (P.P.C., Chulalongkorn University) (5) PETROMAT: Center of Excellence on Petrochemical and Materials Technology. Thanks are also extended to faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand, provided MDR-TB culture laboratory, Faculty of Medicine, Srinakharinwirot University, provided MG extract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitt Supaphol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekabutr, P., Chuysinuan, P., Suksamrarn, S. et al. Development of antituberculosis melt-blown polypropylene filters coated with mangosteen extracts for medical face mask applications. Polym. Bull. 76, 1985–2004 (2019). https://doi.org/10.1007/s00289-018-2468-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2468-x

Keywords

Navigation