Skip to main content

Advertisement

Log in

The preparation and use of p(2-acrylamido-2-methyl-1-propanesulfonic acid)-tris(dioxa-3,6-heptyl)amine (p(AMPS)-TDA-1) ionic liquid microgel in hydrogen production

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Microgels of polymeric ionic liquid (PIL) combine the advantages of the both ionic liquids and polymeric microgels. The microgel in this work was prepared from 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) treated with tris(dioxa-3,6-heptyl) amine (TDA-1) (p(AMPS)-TDA-1), synthesized in a water in oil micro-emulsion via photo-irradiation, with a wavelength of 420 nm, for 2 h. The synthesized p(AMPS)-TDA-1 PIL microgels were then characterized via microscope, scanning electron microscope, Fourier transform infrared spectrometer, thermogravimetric analyzer, and zeta potential measurements. Applications of these PIL microgels were also investigated by using p(AMPS)-TDA-1 PIL as a template for in situ Co and Ni metal nanoparticle preparation and as a catalyst in the hydrolysis of NaBH4 for H2 production. The potential for p(AMPS)-TDA-1 PIL microgels as metal-free catalyst in the methanolysis of NaBH4 for H2 generation was explored as well. It was found that the metal-free p(AMPS)-TDA-1 PIL microgel displayed superior catalytic activity in methanolysis of NaBH4 reaction with a hydrogen generation rate (HGR) of 854 ± 51.6 mL H2/(min g of catalyst) and very low activation energy (Ea), 14.3 kJ/mol Ea. Reusability tests on the p(AMPS)-TDA-1 PIL microgel as a metal-free catalysis showed promising results; At end of the 10th trail, no decrease in the 100% conversion was observed with only 14% decrease in activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Walden P (1914) Ueber die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzener Salze (Molecular weights and electrical conductivity of several fused salts). Bull Acad Sci St Petersburg 8:405–422

    Google Scholar 

  2. Wasserscheid P, Keim W (2000) Ionic liquids-new “Solutions” for transition metal catalysis. Angew Chem Int Ed 3772:3772–3789

    Article  Google Scholar 

  3. Ma J, Hong X (2012) Application of ionic liquids in organic pollutants control. J Environ Manage 99:104–109

    Article  CAS  PubMed  Google Scholar 

  4. Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecules 15:2405–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Welton T (1999) Room-temperature ionic liquids solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  6. Pereiro AB, Araujo MMJ, Martinho S, Alves F, Nunes S, Matias A, Duarte CMM, Rebelo LPN, Marrucho IM et al (2013) Fluorinated ionic liquids: properties and applications. ACS Sustain Chem Eng 1:427–439

    Article  CAS  Google Scholar 

  7. Feng R, Zhao D, Guo Y (2010) Revisiting characteristics of ionic liquids: a review for further application development. J Environ Protect 1:95–104

    Article  Google Scholar 

  8. Parvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665

    Article  CAS  PubMed  Google Scholar 

  9. Chinnappan A, Kim H (2012) Environmentally benign catalyst: synthesis, characterization, and properties of pyridinium dicationic molten salts (ionic liquids) and use of application in esterification. Chem Eng J 187:283–288

    Article  CAS  Google Scholar 

  10. Chinnappan A, Chung WJ, Kim H (2015) Hypercross-linked micrporous polymeric ionic liquid membranes: synthesis, properties and their application in H2 generation. J Mater Chem A 3:22960–22968

    Article  CAS  Google Scholar 

  11. Jadhav AH, Kim H, Hwang IT (2012) Efficient selective dehydration of fructose and sucrose into 5-hydroxymethylfurfural (HMF) using dicationic room temperature ionic liquids as a catalyst. Catal Commun 21:96–103

    Article  CAS  Google Scholar 

  12. Yin J, Li X, Yu J, Zhang Z, Zhou J, Guo W (2014) Generating electricity by moving a droplet of ionic liquid along graphene. Nat Nanotechnol 9:378–383

    Article  CAS  PubMed  Google Scholar 

  13. Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Sabounchei SJ, Sarlakifar M (2015) Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode. Anal Chim Acta 870:56–66

    Article  CAS  PubMed  Google Scholar 

  14. Ho TD, Zhang C, Hanto LW, Anderson JL (2013) Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 86:262–285

    Article  CAS  PubMed  Google Scholar 

  15. Nordwald EM, Brunecky R, Himmel ME, Beckhamm GT, Kaar JL (2014) Charge engineering of cellulases improves ionic liquid tolerance and reduces lignin inhibition. Biotechnol Bioeng 111:1541–1549

    Article  CAS  PubMed  Google Scholar 

  16. Yuan J, Mecerreyes D, Antonietti M (2013) Poly (ionic liquid)s: an update. Prog Polym Sci 38:1009–1036

    Article  CAS  Google Scholar 

  17. Bellotti D, Rivarolo M, Magistri L, Massardo AF (2015) Thermoeconomic comparison of hydrogen and hydro-methane produced from hydroelectric energy for land transportation. J Hydogen Energy 40:2433–2444

    Article  CAS  Google Scholar 

  18. Zhou L (2005) Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev 9:395–408

    Article  CAS  Google Scholar 

  19. Gang BG, Kwon S (2016) The proton exchange membrane fuel cell systems using methanolysis of sodium borohydride as hydrogel source with cobalt catalysts. Int J Green Energy 13:1224–1231

    Article  CAS  Google Scholar 

  20. Su CC, Lu MC, Wang SL, Huang YH (2012) Ruthenium immobilized on Al2O3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride. RSC Adv 2:2073–2079

    Article  CAS  Google Scholar 

  21. Wee JH, Lee KY, Kim SH (2006) Sodium borohydride as the hydrogen supplier for proton exchange membrane fuel cell systems. Fuel Process Technol 87:811–819

    Article  CAS  Google Scholar 

  22. Xu D, Zhao L, Dai P, Ji S (2012) Hydrogen generation from methanolysis of sodium borohydride over Co/Al2O3 catalyst. J Nat Gas Chem 21:488–494

    Article  CAS  Google Scholar 

  23. Liu BH, Li ZP (2009) A review: hydrogen generation from borohydride hydrolysis reaction. J Power Sour 187:527–534

    Article  CAS  Google Scholar 

  24. Hannauer J, Demirci UB, Pastor G, Geantet C, Herrmann JM, Miele P (2010) Hydrogen release through catalyzed methanolysis of solid sodium borohydride. Energy Environ Sci 3:1796–1803

    Article  CAS  Google Scholar 

  25. Chang J, Tian H, Du F (2014) Investigation into hydrolysis and alcoholysis of sodium borohydride in ethanol–water solutions in the presence of supported Co–Ce–B catalyst. Int J Hydrogen Energy 39:13087–13097

    Article  CAS  Google Scholar 

  26. Lo CTF, Karan K, Davis BR (2007) Kinetic studies of reaction between sodium borohydride and methanol, water and their mixtures. Ind Eng Chem Res 46:5478–5484

    Article  CAS  Google Scholar 

  27. Dhathathreyan KS, Ramya K, Srinivas J, Narasimhan S, Kumar S (2007) An improved method for the generation of hydrogen from a metal hydrogen compound and a device therefor. Indian patent application No. 1106/DEL/2007

  28. Ramachandran PV, Hazra D, Raju BC, Mereddy VR, Bhattacharya AA (2005) Method of controlled alcoholysis and regeneration of a borohydride. US patent 7,601,797 B1

  29. Stanic V, Carrington DAB (2007) Hydrogen production from borohydrides and glycerol. US patent 20100196242 A1

  30. Lo CTF, Karan K, Davis BR (2009) Kinetic assessment of catalysts for the methanolysis of sodium borohydride for hydrogen generation. Ind Eng Chem Res 48:5177–5184

    Article  CAS  Google Scholar 

  31. Ramya K, Dhathathreyan KS, Srinivas J, Kumar S, Narasimhan S (2013) Hydrogen production by alcholysis of sodium borohydride. Int J Energy Res 37:1889–1895

    Article  CAS  Google Scholar 

  32. Ricks-Laskoski HL, (2010) Snow AW Polymerizable sulfonate ionic liquids and liquid polymers therefrom, US 7,858,822 B1

  33. Green O, Grubjesic S, Lee S, Firestone AA (2009) The design of polymeric ionic liquids for the preparation of functional materials. J Macromol Sci Part C Polym Rev 49:339–360

    CAS  Google Scholar 

  34. Mecerreyes D (2011) Polymeric ionic liquids: broading he properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648

    Article  CAS  Google Scholar 

  35. Marcilla R, Sanchez-Paniagua M, Lopez-Ruiz B, Loper-Cabarcos E, Ochoteco E, Grande H, Mecerreyes D (2006) Synthesis and charatcerizaiton of new polymeric ionic liquid microgels. J Polym Sci Part A Polym Chem 44:3958–3965

    Article  CAS  Google Scholar 

  36. Cui J, Gao NLJ, Wang C, Wang H, Zhou M, Zhang M, Li G (2015) Poly(ionic liquid)-based monodisperse microgels as a unique platform for producing functional materials. J Mater Chem C 3:623–631

    Article  CAS  Google Scholar 

  37. Md Rahman T, Barikbin Z, Badruddoza AZM, Doyle PS, Khan SA (2013) Monodisperse polymeric ionic liquid microgel beads with multiple chemically switchable functionalities. Langmuir 29:9535–9543

    Article  CAS  Google Scholar 

  38. Sahiner N, Yasar AO (2016) Imidazolium based polymeric ionic liquid microgels as an alternative catalyst to metal catalyst for H2 generation from methanolysis of NaBH4. Fuel Process Technol 152:316–324

    Article  CAS  Google Scholar 

  39. Sagbas S, Sahiner N (2012) Tunable poly(2-acrylamido-2-methyl-1-propan sulfonic acid) based microgels with better catalytic performances for Co and Ni nanoparticle preparation and their use in hydrogen generation from NaBH4. Int J Hydrogen Energy 37:18944–18951

    Article  CAS  Google Scholar 

  40. Sahiner N, Yasar AO, Aktas N (2016) An alternative to metal catalysts: poly (4-vinyl pyridine)-based polymeric ionic liquid catalyst for H2 generation from hydrolysis and methanolysis of NaBH4. Int J Hydrogen Energy 41:20562–20572

    Article  CAS  Google Scholar 

  41. Sahiner N, Demirci S (2017) Very fast H2 production from the methanolysis of NaBH4 by metal-free poly (ethylene imine) microgel catalysts. Int J Energy Res 41:736–746

    Article  CAS  Google Scholar 

  42. Sahiner N, Sengel SB (2017) Various amine functionalized halloysite nanotube as efficient metal free catalysts for H2 generation from sodium borohydride methanolysis. Appl Clay Sci 146:517–525

    Article  CAS  Google Scholar 

  43. Sahiner N, Sengel SB (2017) Environmentally benign halloysite clay nanotubes as alternative catalyst to metal nanoparticles in H2 production from methanolysis of sodium borohydride. Fuel Process Technol 158:1–8

    Article  CAS  Google Scholar 

  44. Sahiner N, Demirci S (2017) Natural microgranular cellulose as alternative catalyst to metal nanoparticles for H2 production from NaBH4 methanolysis. Appl Catal B Environ 202:199–206

    Article  CAS  Google Scholar 

  45. Yan KQ, Li YH, Zhang X, Yang X, Zhang N, Zheng JB, Chen BH, Smith KJ (2015) Effect of preparation method on Ni2P/SiO2 catalytic activity for NaBH4 methanolysis and phenol hydrodeoxygenation. Int J Hydrogen Energy 40:16137–16146

    Article  CAS  Google Scholar 

  46. Sahiner N, Yasar AO, Aktas N (2017) Metal-free pyridinium-based polymeric ionic liquids as catalyst for H2 generation from NaBH4. Renew Energy 101:1005–1012

    Article  CAS  Google Scholar 

  47. Sahiner N, Sengel SB (2017) Quaternized polymeric microgels as metal free catalyst for H2 production from the methanolysis of sodium borohydride. J Power Sour 336:27–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurettin Sahiner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirci, S., Zekoski, T. & Sahiner, N. The preparation and use of p(2-acrylamido-2-methyl-1-propanesulfonic acid)-tris(dioxa-3,6-heptyl)amine (p(AMPS)-TDA-1) ionic liquid microgel in hydrogen production. Polym. Bull. 76, 1717–1735 (2019). https://doi.org/10.1007/s00289-018-2465-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2465-0

Keywords

Navigation