Skip to main content

Advertisement

Log in

Core shell microcapsules of neem seed oil extract containing azadirachtin and biodegradable polymers and their release characteristics

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Azadirachtin is a biologically active constituent of neem seed oil, exhibiting medicinal and pesticidal properties. This work reports on the encapsulation of neem seed oil extract within three different polymeric shells: polyvinyl alcohol (PVA), gum arabic (GA), and whey protein isolate/maltodextrin (WPI/MD), using spray drying. The obtained roughly spherical microcapsules had average sizes of 28.84 ± 11.86, 32.43 ± 13.06, and 52.88 ± 17.33 µm (obtained from PVA, GA, and WPI/MD, respectively). Fourier-transform infrared spectroscopy confirmed the presence of the core and shell components, in addition to surface functional groups. Encapsulation efficiencies for neem seed oil proved higher in smaller microcapsules, although efficiency values of 60–92% were obtained in all cases. In vitro release of neem seed oil from the microcapsules followed the Ritger–Peppas model, as governed by Fickian diffusion. From these results, the association of botanical insecticides within biopolymer cores offers considerable potential for increasing agricultural production levels and reducing impacts on the environment and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geiger F, Bengtsson J, Berendse F et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105

    Article  CAS  Google Scholar 

  2. Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034

    Article  CAS  Google Scholar 

  3. Tiilikkala K, Lindqvist I, Hagner M et al (2011) Use of botanical pesticides in modern plant protection. In: Pesticides in the modern world-pesticides use and management. Pesticides in the Modern World. ISBN: 978-953-307-459-7

  4. Devi N, Maji TK (2009) A novel microencapsulation of neem (Azadirachta indica A. Juss.) seed oil (NSO) in polyelectrolyte complex of κ-carrageenan and chitosan. J Appl Polym Sci 113:1576–1583

    Article  CAS  Google Scholar 

  5. Devi N, Maji TK (2009) Effect of crosslinking agent on neem (Azadirachta indica A. Juss.) seed oil (NSO) encapsulated microcapsules of κ-carrageenan and chitosan polyelectrolyte complex. J Macromol Sci Pure Appl Chem 46:1114–1121

    Article  CAS  Google Scholar 

  6. Pal K, Banthia AK, Majumdar DK (2007) Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. AAPS PharmSciTech 8:E142–E146

    Article  Google Scholar 

  7. Bachtsi AR, Synthesis Kiparissides C (1996) Synthesis and release studies of oil-containing poly (vinyl alcohol) microcapsules prepared by coacervation. J Control Release 38:49–58

    Article  CAS  Google Scholar 

  8. Krishnan S, Kshirsagar AC, Singhal RS (2005) The use of gum arabic and modified starch in the microencapsulation of a food flavoring agent. Carbohydr Polym 62:309–315

    Article  CAS  Google Scholar 

  9. Kaasgaard T, Keller D (2005) Chitosan coating improves retention and redispersibility of freeze-dried flavor oil emulsions. Journal of agricultural and food chemistry. J Agric Food Chem 58:2446–2454

    Article  CAS  Google Scholar 

  10. Madene A, Jacquot M, Scher J (2006) Flavour encapsulation and controlled release—a review. Int J Food Sci Technol 41:1–21

    Article  CAS  Google Scholar 

  11. Kim YD, Morr CV (1996) Microencapsulation properties of gum arabic and several food proteins: spray-dried orange oil emulsion particles. J Agric Food Chem 44:1314–1320

    Article  CAS  Google Scholar 

  12. Calvo P, Hernández T, Lozano M et al (2010) Microencapsulation of extra-virgin olive oil by spray-drying: influence of wall material and olive quality. Eur J Lipid Sci Technol 112:852–858

    Article  CAS  Google Scholar 

  13. Koç M, Güngör Ö, Zungur A et al (2015) Microencapsulation of extra virgin olive oil by spray drying: effect of wall materials composition, process conditions, and emulsification method. Food Bioprocess Technol 8:301–318

    Article  CAS  Google Scholar 

  14. Riyajan SA, Sakdapipanich JT (2009) Development of a controlled release neem capsule with a sodium alginate matrix, crosslinked by glutaraldehyde and coated with natural rubber. Polym Bull 63:609–622

    Article  CAS  Google Scholar 

  15. Kumbar SG, Kulkarni AR, Dave AM (2001) Encapsulation efficiency and release kinetics of solid and liquid pesticides through urea formaldehyde crosslinked starch, guar gum, and starch guar gum matrices. J Appl Polym Sci 82:2863–2866

    Article  CAS  Google Scholar 

  16. Korsmeyer RW, Peppas NA (1981) Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs. J Membr Sci 9:211–227

    Article  CAS  Google Scholar 

  17. Maderuelo C, Zarzuelo A, Lanao JM (2011) Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release 154:12–19

    Article  CAS  Google Scholar 

  18. Siepmann J, Peppas NA (2001) Mathematical modeling of controlled drug delivery. Adv Drug Deliv Rev 48:137–138

    Article  CAS  PubMed  Google Scholar 

  19. Sullad AG, Manjeshwar LS, Aminabhavi TM (2010) Controlled release of theophylline from interpenetrating blend microspheres of poly (vinyl alcohol) and methyl cellulose. J Appl Polym Sci 116:1226–1235

    CAS  Google Scholar 

  20. Nayak AK, Das B, Maji R (2012) Calcium alginate/gum Arabic beads containing glibenclamide: development and in vitro characterization. Int J Biol Macromol 51:1070–1078

    Article  CAS  PubMed  Google Scholar 

  21. Hundre SY, Karthik P, Anandharamakrishnan C (2015) Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray–freeze drying method. Food Chem 174:16–24

    Article  CAS  PubMed  Google Scholar 

  22. Choi KO, Ryu J, Kwak HS, Ko S (2010) Spray-dried conjugated linoleic acid encapsulated with Maillard reaction products of whey proteins and maltodextrin. Food Sci Biotechnol 19:957–965

    Article  CAS  Google Scholar 

  23. Klinkesorn U, Sophanodora P, Chinachoti P et al (2006) Characterization of spray-dried tuna oil emulsified in two-layered interfacial membranes prepared using electrostatic layer-by-layer deposition. Food Res Int 39:449–457

    Article  CAS  Google Scholar 

  24. Al-Ismail K, El-Dijani L, Al-Khatib H et al (2016) Effect of microencapsulation of vitamin C with gum Arabic, whey protein isolate and some blends on its stability. J Sci Indust Res 75(3):176–180

    CAS  Google Scholar 

  25. Buma TJ (1971) Free fat in spray-dried whole milk. 8. The relation between free-fat content and particle porosity of spray-dried whole milk. Nederlands melk-en zuiveltijdschrift. Neth Milk Dairy J. 25(1971):123

    CAS  Google Scholar 

  26. Bagle AV, Jadhav RS, Gite VV et al (2013) Controlled release study of phenol formaldehyde microcapsules containing neem oil as an insecticide. Int J Polym Mater 62:421–425

    Article  CAS  Google Scholar 

  27. Porras-Saavedra J, Palacios-González E, Lartundo-Rojas L (2015) Microstructural properties and distribution of components in microcapsules obtained by spray-drying. J Food Eng 152:105–112

    Article  CAS  Google Scholar 

  28. Turchiuli C, Munguia MJ, Sanchez MH et al (2014) Use of different supports for oil encapsulation in powder by spray drying. Adv Powder Technol 255:103–108

    Article  CAS  Google Scholar 

  29. Tan LH, Chan LW, Heng PW (2005) Effect of oil loading on microspheres produced by spray drying. J Microencapsul 22:253–259

    Article  CAS  PubMed  Google Scholar 

  30. Riyajan SA, Sakdapipanich JT (2009) Encapsulated neem extract containing Azadiractin-A within hydrolyzed poly (vinyl acetate) for controlling its release and photodegradation stability. Chem Eng 152:591–597

    Article  CAS  Google Scholar 

  31. Forim MR, Costa ES, da Silva MF et al (2013) Development of a new method to prepare nano-/microcapsules loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J Agric Food Chem 61:9131–9139

    Article  CAS  PubMed  Google Scholar 

  32. Hosseini SF, Zandi M, Rezaei M et al (2013) Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr Polym 95:50–56

    Article  CAS  PubMed  Google Scholar 

  33. Moreau DL, Rosenberg M (1993) Microstructure and fat extractability in microcapsule based on whey proteins or mixtures of whey proteins and lactose. Food Struct 12:6

    Google Scholar 

  34. Hwang JS, Kim JN, Wee YJ (2006) Preparation and characterization of melamine-formaldehyde resin microcapsules containing fragrant oil. Biotechnol Bioprocess Eng 11:332–336

    Article  CAS  Google Scholar 

  35. de Barros Fernandes RV, Borges SV, Botrel DA (2014) Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr Polym 101:524–532

    Article  CAS  Google Scholar 

  36. Chime SA, Onunkwo GC, Onyishi II (2013) Kinetics and mechanisms of drug release from swellable and non swellable matrices: a review. Res J Pharm Biol Chem Sci 4:97–103

    CAS  Google Scholar 

  37. Singhvi G, Singh M (2011) Review: in vitro drug release characterization models. Int J Pharm Stud Res 2:77–84

    Google Scholar 

  38. Felix PH, Birchal VS, Botrel DA (2016) Physicochemical and thermal stability of microcapsules of cinnamon essential oil by spray drying. J Food Process, Preserv

    Google Scholar 

  39. Kumar RV, Koltypin Y, Cohen YS (2000) Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J Mater Chem B 10:1125–1129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by Thammasat University Research Fund under the TU research Scholar, Contract No. 13/2561; the National Research Council of Thailand and the Plastics Institute of Thailand. We also acknowledge the Laboratory of Organic Synthesis, Chulabhorn Research Institute and the center for advanced studies in Materials and Packaging TU, Faculty of Science and Technology, Thammasat University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiravoot Pechyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sittipummongkol, K., Chuysinuan, P., Techasakul, S. et al. Core shell microcapsules of neem seed oil extract containing azadirachtin and biodegradable polymers and their release characteristics. Polym. Bull. 76, 3803–3817 (2019). https://doi.org/10.1007/s00289-018-2456-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2456-1

Keywords

Navigation