Skip to main content
Log in

Hot extrusion of PE/fluorouracil implantable rods for targeted drug delivery in cancer treatment

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, implantable polyethylene/fluorouracil (PE/FU) rods were manufactured by hot extrusion under different processing conditions. SEM–EDS analyses revealed the effect of temperature on the morphology of the samples. Furthermore, small particles of fluorouracil were observed on the surface and in the PE matrix. Both the FTIR and NIR spectra of the PE/FU rods confirmed the presence of fluorouracil. The PE/FU rods presented lower values of flexural modulus and fatigue resistance than pure PE rods; this was probably due to imperfections and defects introduced into the PE matrix by the fluorouracil particles. The initial amount of FU released by the extruded PE/FU rods (around 35 mg/g) is desirable since it provides a high initial concentration of the drug locally to kill cancer cells following implantation. The subsequent slow and controlled release of the drug (12–45 days) provides suitable levels of the chemotherapeutic agent at the tumor site to improve the anticancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Weinberg Brent D, Blanco Elvin, Gao Jinming (2008) Polymer implants for intratumoral drug delivery and cancer therapy. J Pharm Sci 97(5):1681–1702

    Article  CAS  PubMed  Google Scholar 

  2. Solorio L, Patel RB, Wu H, Krupka T, Exner AA (2010) Advances in image-guided intratumoral drug delivery techniques. Ther Deliv 1(2):307–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Olivi A, Ewend MG, Utsuki T, Tyler B, Domb AJ, Brat DJ, Brem H (1996) Interstitial delivery of carboplatin via biodegradable Polymers is effective against experimental glioma in the rat. Cancer Chemother Pharmacol 39:90–96

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Pei, Zhang Huiyuan, He Wenxiu, Zhao Dujuan, Song Aixin, Luan Yuxia (2016) Disulfide-linked amphiphilic polymer-docetaxel conjugates assembled redox-sensitive micelles for efficient antitumor drug delivery. Biomacromolecules 17:1621–1632

    Article  CAS  PubMed  Google Scholar 

  5. Shia C, Zhang Z, Shia J, Wangb F, Luana Y (2015) Co-delivery of docetaxel and chloroquine via PEO–PPO–PCL/TPGS micelles for overcoming multidrug resistance. Int J Pharm 495:932–939

    Article  CAS  Google Scholar 

  6. Weinberg BD, Ai H, Blanco E, Anderson JM, Gao J (2007) Antitumor efficacy and local distribution of doxorubicin via intratumoral delivery from polymer millirods. J Biomed Mater Res 81A:161–170. https://doi.org/10.1002/jbm.a.30914

    Article  CAS  Google Scholar 

  7. Seno Hiroshi, Ito Kazuki, Kojima Koichi, Nakajima Nobuaki, Chiba Tsutomu (1999) Efficacy of an implanted drug delivery system for advanced hepatocellular carcinoma using 5-fluorouracil, epirubicin and mitomycin C. J Gastroenterol Hepatol 14:811–816

    Article  CAS  PubMed  Google Scholar 

  8. Wang Shenguo, Chen Hongli, Cai Qing, Bei Jianzhong (2001) Degradation and 5-fluorouracil release behavior in vitro of polyethylene/poly(ethylene oxide)/polylactide tri-component copolymer. Polym Adv Technol 12:253–258

    Article  CAS  Google Scholar 

  9. Martini LG, Collett JH, Attwood D (2000) The release of 5-fluorouracil from microspheres of poly(epsiloncaprolactone-co-ethylene oxide). Drug Dev Ind Pharm 26(1):7–12

    Article  CAS  PubMed  Google Scholar 

  10. Shah S, Maddineni S, Lu J, Repka MA (2013) Melt extrusion with poorly soluble drugs. Int J Pharm 453:233–252

    Article  CAS  PubMed  Google Scholar 

  11. Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D (2013) A review of hot-meltextrusion: process technology to pharmaceutical products. Int Sch Res Netw ISRN Pharm 2012, Article ID 436763, 9 pages https://doi.org/10.5402/2012/436763

  12. Forster A, Hempenstall J, Tucker I, Rades T (2001) Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm 226:147–161

    Article  CAS  PubMed  Google Scholar 

  13. Santos DV, Casadei APM, Pereira RV, Aragones A, Salmoria GV, Fredel MC (2012) Development of polymer/nanoceramic composite material with potential application in biomedical engineering. Mater Sci Forum 727:1142–1146

    Article  CAS  Google Scholar 

  14. Crowley MM, Fredersdorf A, Schroeder B, Kucer S, Prodduturi S, Repka MA, McGinity JW (2004) The influence of guaifenesin and ketoprofen on the properties of hot-melt extruded polyethylene oxide films. Eur J Pharm Biopharm 22:409–418

    CAS  Google Scholar 

  15. Crowley MM, Schroeder B, Fredersdorf A, Obara S, Talarico M, Kucera S, McGinity JW (2004) Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int J Pharm 269:509–522

    Article  CAS  PubMed  Google Scholar 

  16. Zepon KM, Vieira LF, Soldi V, Salmoria GV, Kanis LA (2013) Influence of process parameters on microstructure and mechanical properties of starch-cellulose acetate/silver sulfadiazine matrices prepared by melt extrusion. Polym Test 32:1123–1127

    Article  CAS  Google Scholar 

  17. Zepon KM, Petronilho F, Soldi V, Salmoria GV, Kanis LA (2014) Production and characterization of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices. Mater Sci Eng C 44:225–233

    Article  CAS  Google Scholar 

  18. Guo G, Fu SZ, Zhou LX, Liang H, Fan M, Luo F, Qian ZY, Wei YQ (2011) Preparation of curcumin loaded poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells. Nanoscale 3:3825–3832

    Article  CAS  PubMed  Google Scholar 

  19. Yilmaz M, Vayvada H, Aydın E, Menderes A, Atabey A (2007) Repair of fractures of the orbital floor with porous polyethylene implants. Br J Oral Maxillofac Surg 45(8):640–644

    Article  PubMed  Google Scholar 

  20. Singh P, Tyagi G, Mehrotra R, Bakhshi AK (2009) Thermal stability studies of 5-fluorouracil using diffuse reflectance infrared spectroscopy. Drug Test Anal 1:240–244

    Article  CAS  PubMed  Google Scholar 

  21. Gulmine V, Janissek PR, Heise HM, Akcelrud L (2002) Polyethylene characterization by FTIR. Polym Test 21:557–563. https://doi.org/10.1016/S0142-9418(01)00124-6

    Article  CAS  Google Scholar 

  22. Peacock AJ (2000) Handbook of polyethylene: structures, properties, and applications. Marcel Dekker, New York

    Book  Google Scholar 

  23. Edward SK, Mahpour M (1973) The identification and origin of N–H overtone and combination bands in the near-infrared spectra of simple primary and secondary amides. Spectrochim Acta A 29:1233–1246

    Article  Google Scholar 

  24. Hazen KH, Arnold MA, Small GW (1998) Measurement of glucose in water with first-overtone near-infrared spectra. Appl Spectrosc 52:1597–1605

    Article  CAS  Google Scholar 

  25. Eddy Christopher V, Arnold Mark A (2001) Near-infrared spectroscopy for measuring urea in hemodialysis fluids. Clin Chem 47(7):1279–1286

    CAS  PubMed  Google Scholar 

  26. Crandall EW, Jagtap AN (1977) The near-infrared spectra of polymers. J Appl Polym Sci 21:449–454. https://doi.org/10.1002/app.1977.070210211

    Article  CAS  Google Scholar 

  27. Mirabella FM, Bafna A (2002) Determination of the crystallinity of polyethylene/α-olefin copolymers by thermal analysis: relationship of the heat of fusion of 100% polyethylene crystal and the density. J Polym Sci B Polym Phys 40:1637–1643

    Article  CAS  Google Scholar 

  28. Yassin AEB, Anwer MK, Mowafy HA, El-Bagory IM, Bayomi MA, Alsarra IA (2010) Optimization of 5-fluorouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer. Int J Med Sci 7(6):398–408. https://doi.org/10.7150/ijms.7.398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee JS, Chae GS, An TK, Khang G, Cho SH, Lee HB (2003) Preparation of 5-fluorouracil-loaded poly(L-lactide-co-glycolide) wafer and evaluation of in vitro release behavior. Macromol Res 11(3):183–188

    Article  CAS  Google Scholar 

  30. Hanafy AFAH, El-Egaky AM, Mortada SAM, Molokhia AM (2009) Development of implants for sustained release of 5-fluorouracil using low molecular weight biodegradable polymers. Drug Discov Ther 3(6):287–295

    CAS  PubMed  Google Scholar 

  31. Sairam M, Babu VR, Naidu BVK, Aminabhavi TM (2006) Encapsulation efficiency and controlled release characteristics of crosslinked polyacrylamide particles. Int J Pharm 320:131–136

    Article  CAS  PubMed  Google Scholar 

  32. Gao H, Gu Y, Ping Q (2007) The implantable 5-fluorouracil-loaded poly(l-lactic acid) fibers prepared by wet-spinning from suspension. J Controll Release 3(23):325–332

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank PRONEX/FAPESC, CNPQ and FINEP for financial support and Mr. Paulo C.M. Rosa for the inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Salmoria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmoria, G.V., Ghizoni, G.B., Gindri, I.M. et al. Hot extrusion of PE/fluorouracil implantable rods for targeted drug delivery in cancer treatment. Polym. Bull. 76, 1825–1838 (2019). https://doi.org/10.1007/s00289-018-2451-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2451-6

Keywords

Navigation