One-pot one-step synthesis of a photo-cleavable cross-linker via Passerini reaction for fabrication of responsive polymeric particles

Abstract

A new approach for the synthesis of a photo-cleavable cross-linker and preparation of light-responsive polymeric particles is proposed in the current work. A multicomponent reaction, Passerini reaction, is employed as a one-pot one-step synthetic approach for the preparation of the acrylate-based cross-linker (hexane-1,6-diylbis(azanediyl))bis(1-(2-nitrophenyl)-2-oxoethane-2,1-diyl) diacrylate) (PCDA). Briefly, Passerini reaction of 1,6-diisocyanohexane, 2-nitrobenzaldehyde and acrylic acid yields the photo-cleavable diacrylate with o-nitrobenzyl ester moieties. Subsequently, the cross-linker is successfully utilized in the preparation of poly(methyl methacrylate) microspheres and nanospheres via suspension and miniemulsion polymerization, respectively. Finally, light-induced degradations of the polymeric particles are conducted under UV light illumination (around 366 nm). All compounds and products in each step are well characterized by FTIR, 1H-NMR, UV–Vis spectroscopy, light microscopy and SEM.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Scheme 4
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Reineke TM (2016) Stimuli-responsive polymers for biological detection and delivery. ACS Macro Lett 5:14–18

    Article  CAS  Google Scholar 

  2. 2.

    Wei M, Gao Y, Li X, Serpe MJ (2017) Stimuli-responsive polymers and their applications. Polym Chem 8:127–143

    Article  CAS  Google Scholar 

  3. 3.

    Champion JA, Katare YK, Mitragotri S (2007) Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci USA 104:11901–11904

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Tiwari A, Kobayashi H (2014) Responsive materials and methods state-of-the-art stimuli-responsive materials and their applications. Scrivener Publishing, Beverly

    Google Scholar 

  6. 6.

    Lone S, Kim SH, Nam SW, Park S, Cheong IW (2010) Microfluidic preparation of dual stimuli-responsive microparticles and light-directed clustering. Langmuir 26:17975–17980

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Stuart MAC, Huck WTS, Genzer J, Mueller M, Ober C et al (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Cabane E, Zhang X, Langowska K, Palivan CG, Meier W (2012) Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 7:1–27

    Article  CAS  Google Scholar 

  9. 9.

    Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45:1457–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Klinger D (2013) Light-sensitive polymeric nanoparticles based on photo-cleavable chromophores. Springer, Berlin

    Google Scholar 

  12. 12.

    Kim MS, Diamond SL (2006) Photocleavage of o-nitrobenzyl ether derivatives for rapid biomedical release applications. Bioorg Med Chem Lett 16:4007–4010

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Fomina N, Sankaranarayanan J, Almutairi A (2012) Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev 64:1005–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Lux CD, McFearin CL, Joshi-Barr S, Sankaranarayanan J, Fomina N, Almutairi A (2012) Single UV or Near IR triggering event leads to polymer degradation into small molecules. ACS Macro Lett 1:922–926

    Article  CAS  Google Scholar 

  15. 15.

    Klán P, Šolomek T, Bochet CG, Blanc A, Givens R et al (2013) Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem Rev 113:119–191

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Klinger D, Landfester K (2011) Photo-sensitive PMMA microgels: light-triggered swelling and degradation. Soft Matter 7:1426–1440

    Article  CAS  Google Scholar 

  17. 17.

    Zhao H, Sterner ES, Coughlin EB, Theato P (2012) o-Nitrobenzyl alcohol derivatives: opportunities in polymer and materials science. Macromolecules 45:1723–1736

    Article  CAS  Google Scholar 

  18. 18.

    Domling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210

    Article  CAS  Google Scholar 

  19. 19.

    Dömling A (2000) The discovery of new isocyanide-based multi-component reactions. Curr Opin Chem Biol 4:318–323

    Article  PubMed  Google Scholar 

  20. 20.

    Bousquet T, Jida M, Soueidan M, Deprez-Poulain R, Agbossou-Niedercorn F, Pelinski L (2012) Fast and efficient solvent-free Passerini reaction. Tetrahedron Lett 53:306–308

    Article  CAS  Google Scholar 

  21. 21.

    Kreye O, Toth T, Meier MAR (2011) Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. J Am Chem Soc 133:1790–1792

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Kreye O, Trefzger C, Sehlinger A, Meier MAR (2014) Multicomponent reactions with a convertible isocyanide: efficient and versatile grafting of ADMET-derived polymers. Macromol Chem Phys 215:2207–2220

    Article  CAS  Google Scholar 

  23. 23.

    Kakuchi R (2014) Multicomponent reactions in polymer synthesis. Angew Chem Int Ed 53:46–48

    Article  CAS  Google Scholar 

  24. 24.

    Sehlinger A, Kreye O, Meier MAR (2013) Tunable polymers obtained from Passerini multicomponent reaction derived acrylate monomers. Macromolecules 46:6031–6037

    Article  CAS  Google Scholar 

  25. 25.

    Schmidt S, Koldevitz M, Noy J-M, Roth PJ (2015) Multicomponent isocyanide-based synthesis of reactive styrenic and (meth)acrylic monomers and their RAFT (co)polymerization. Polym Chem 6:44–54

    Article  CAS  Google Scholar 

  26. 26.

    Kakuchi R, Theato P (2013) Three-component reactions for post-polymerization modifications. ACS Macro Lett 2:419–422

    Article  CAS  Google Scholar 

  27. 27.

    Lin WH, Li Y, Zhang W, Liu S, Xie ZG, Jing XB (2016) Near-infrared polymeric nanoparticles with high content of cyanine for bimodal imaging and photothermal therapy. ACS Appl Mater Interfaces 8:24426–24432

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Li L, Kan XW, Deng XX, Song CC, Du FS, Li ZC (2013) Simultaneous dual end-functionalization of PEG via the Passerini three-component reaction for the synthesis of ABC miktoarm terpolymers. J Polym Sci Polym Chem 51:865–873

    Article  CAS  Google Scholar 

  29. 29.

    Solleder SC, Meier MAR (2014) Sequence control in polymer chemistry through the Passerini three-component reaction. Angew Chem Int Ed 53:711–714

    Article  CAS  Google Scholar 

  30. 30.

    Li L, Lv A, Deng X-X, Du F-S, Li Z-C (2013) Facile synthesis of photo-cleavable polymers via Passerini reaction. Chem Commun 49:8549–8551

    Article  CAS  Google Scholar 

  31. 31.

    Karagoz B, Gunes D, Bicak N (2010) Preparation of crosslinked poly(2-bromoethyl methacrylate) microspheres and decoration of their surfaces with functional polymer brushes. Macromol Chem Phys 211:1999–2007

    Article  CAS  Google Scholar 

  32. 32.

    Ramozzi R, Morokuma K (2015) Revisiting the Passerini reaction mechanism: existence of the nitrilium, organocatalysis of its formation, and solvent effect. J Org Chem 80:5652–5657

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Edler M, Mayrbrugger S, Fian A, Trimmel G, Radl S et al (2013) Wavelength selective refractive index modulation in a ROMP derived polymer bearing phenyl- and ortho-nitrobenzyl ester groups. J Mater Chem C 1:3931–3938

    Article  CAS  Google Scholar 

  34. 34.

    Gaplovsky M, Il’ichev YV, Kamdzhilov Y, Kombarova SV, Mac M et al (2005) Photochemical reaction mechanisms of 2-nitrobenzyl compounds: 2-nitrobenzyl alcohols form 2-nitroso hydrates by dual proton transfer. Photochem Photobiol Sci 4:33–42

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    L-h He, G-m Wang, Tang Q, X-k Fu, C-b Gong (2014) Synthesis and characterization of novel electrochromic and photoresponsive materials based on azobenzene-4,4[prime or minute]-dicarboxylic acid dialkyl ester. J Mater Chem C 2:8162–8169

    Article  CAS  Google Scholar 

  36. 36.

    Rau H, Lueddecke E (1982) On the rotation-inversion controversy on photoisomerization of azobenzenes. Experimental proof of inversion. J Am Chem Soc 104:1616–1620

    Article  CAS  Google Scholar 

  37. 37.

    Li Z, Patil GS, Golubski ZE, Hori H, Tehrani K et al (1993) Peptide alpha-keto ester, alpha-keto amide, and alpha-keto acid inhibitors of calpains and other cysteine proteases. J Med Chem 36:3472–3480

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Heaney F, Fenlon J, McArdle P, Cunningham D (2003) α-Keto amides as precursors to heterocycles-generation and cycloaddition reactions of piperazin-5-one nitrones. Org Biomol Chem 1:1122–1132

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Fomina N, McFearin C, Sermsakdi M, Edigin O, Almutairi A (2010) UV and near-IR triggered release from polymeric nanoparticles. J Am Chem Soc 132:9540–9542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Yildiz Technical University (Project#: 2013-07-04-KAP05).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammet U. Kahveci.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deveci, G., Kahveci, M.U. One-pot one-step synthesis of a photo-cleavable cross-linker via Passerini reaction for fabrication of responsive polymeric particles. Polym. Bull. 76, 1471–1487 (2019). https://doi.org/10.1007/s00289-018-2449-0

Download citation

Keywords

  • Passerini reaction
  • Photo-cleavable cross-linker
  • o-Nitrobenzyl ester
  • Polymeric particles
  • Photo-degradation