Skip to main content
Log in

Simple and efficient approach for improved cytocompatibility and faster degradation of electrospun polycaprolactone fibers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A simplified method to modify electrospun PCL fibers for better degradation and cytocompatibility is proposed. The surface modification was achieved by preparing fibers having pores and subsequent alkali treatment. The modifications were studied by comparing hydrolyzed PCL mats, porous PCL mats and hydrolyzed porous PCL mats with unmodified PCL mats. The in vitro degradation analyzed in simulated wound fluid and biological response using L-929 cells confirmed surface-hydrolyzed porous PCL fibers as non-cytotoxic with enhanced cell adhesion, viability and degradability. The proposed modification will be suitable to fabricate implantable electrospun scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484

    Article  CAS  PubMed  Google Scholar 

  2. Chavalitpanya K, Phattanarudee S (2013) In: 10th Eco-energy and materials science and engineering symposium. 34, p 542

  3. Woodruff MA, Hutmacher DW (2010) Prog Polym Sci 35:1217

    Article  CAS  Google Scholar 

  4. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197

    Article  CAS  PubMed  Google Scholar 

  5. Cipitria A, Skelton A, Dargaville TR, Dalton PD, Hutmacher DW (2011) Effect of different solvents on poly (caprolactone)(PCL) electrospun nonwoven membranes. J Mater Chem 21:9419

    Article  CAS  Google Scholar 

  6. Qin X, Wu D (2012) J Therm Anal Calorim 107:1007

    Article  CAS  Google Scholar 

  7. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613

    Article  CAS  PubMed  Google Scholar 

  8. Subbiah T, Bhat GS, Tock RW, Pararneswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557

    Article  CAS  Google Scholar 

  9. Ng KW, Achuth HN, Moochhala S, Lim TC, Hutmacher DW (2007) In vivo evaluation of an ultra-thin polycaprolactone film as a wound dressing. J Biomater Sci-Polym Ed 18:925

    Article  CAS  PubMed  Google Scholar 

  10. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817

    Article  CAS  PubMed  Google Scholar 

  11. Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YC, Tan LP (2010) Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater 6:2028

    Article  CAS  PubMed  Google Scholar 

  12. Chen H, Huanga J, Yu J, Liu S, Gu P (2011) Electrospun chitosan-graft-poly (ɛ-caprolactone)/poly (ɛ-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int J Biol Macromol 48:13

    Article  CAS  PubMed  Google Scholar 

  13. Wong DJ, Chang HY (2009) Skin tissue engineering. In: StemBook [Internet]. Harvard Stem Cell Institute, Cambridge. https://doi.org/10.3824/stembook.1.44.1

  14. Wharram SE, Zhang XH, Kaplan DL, McCarthy SP (2010) Electrospun silk material systems for wound healing. Macromol Biosci 10:246

    Article  CAS  PubMed  Google Scholar 

  15. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603

    Article  CAS  Google Scholar 

  16. Prasad T, Shabeena EA, Vinod D, Kumary TV, Anil Kumar PR (2015) Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering. J Mater Sci Mater Med 26:5352

    Article  CAS  PubMed  Google Scholar 

  17. Katsogiannis KAG, Vladisavljević GT, Georgiadou S (2015) Porous electrospun polycaprolactone (PCL) fibres by phase separation. Eur Polymer J 69:284

    Article  CAS  Google Scholar 

  18. Pant HR, Neupane MP, Pant B, Panthi G, Oh HJ, Lee MH, Kim HY (2011) Fabrication of highly porous poly (ɛ-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids Surf B Biointerf 88:587

    Article  CAS  Google Scholar 

  19. Yan D, Jones J, Yuan XY, Xu XH, Sheng J, Lee JC, Ma GQ, Yu QS (2013) Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement. J Biomed Mater Res A 101:963

    Article  CAS  PubMed  Google Scholar 

  20. Bassi AK, Gough JE, Zakikhani M, Downes S (2011) The chemical and physical properties of poly(ε-caprolactone) scaffolds functionalised with poly(vinyl phosphonic acid-co-acrylic acid). J Tissue Eng 2011:615328

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Han N, Johnson JK, Bradley PA, Parikh KS, Lannutti JJ, Winter JO (2012) Cell attachment to hydrogel-electrospun fiber mat composite materials. J Funct Biomater 3:497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sant S, Hwang CM, Lee S-H, Khademhosseini A (2011) Hybrid PGS–PCL microfibrous scaffolds with improved mechanical and biological properties. J Tissue Eng Regen Med 5:283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dayal P, Liu J, Kumar S, Kyu T (2007) Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules 40:7689

    Article  CAS  Google Scholar 

  24. Getnet M, Chavan R (2015) Catalyzation of alkaline hydrolysis of polyester by oxidizing agents for surface modification. Int J Sci Basic Appl Res 22:232

    Google Scholar 

  25. Suwantong O (2016) Biomedical applications of electrospun polycaprolactone fiber mats. Polym Adv Technol 27:1264

    Article  CAS  Google Scholar 

  26. Bolgen N, Menceloglu YZ, Acatay K, Vargel I, Piskin E (2005) In vitro and in vivo degradation of non-woven materials made of poly (ε-caprolactone) nanofibers prepared by electrospinning under different conditions. J Biomater Sci Polym Ed 16:1537

    Article  CAS  PubMed  Google Scholar 

  27. Augustine R, Thomas S, Kalarikkal N (2014) Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. Int J Inst Mater Malays 2:211

    Google Scholar 

  28. Mijovic B, Trcin MT, Agic A, Zdraveva E, Bujic M, Spoljaric I, Kosec V (2012) Recent progress in tissue engineering and regenerative medicine. J Fiber Bioeng Inform 5:33

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Department of Science and Technology, Grant number SR/FT/LS-128/2009 to AKPR. The authors thank Ms. Nimi N for contact angle measurements and Mr. Nishad for scanning electron microscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Anil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaskaran, A., Prasad, T., Kumary, T.V. et al. Simple and efficient approach for improved cytocompatibility and faster degradation of electrospun polycaprolactone fibers. Polym. Bull. 76, 1333–1347 (2019). https://doi.org/10.1007/s00289-018-2442-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2442-7

Keywords

Navigation