Skip to main content
Log in

Preparation of nanocomposites based on styrene/(p-methylstyrene) and SiO2 nanoparticles, through a metallocene–MAO initiating system

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The preparation of nanocomposites, including styrene, tertbutylstyrene, and SiO2 nanoparticles, in toluene solution was attempted by in situ polymerization using a cyclopentadienyltitaniumtrichloride–methylaluminoxane, CpTiCl3–MAO, initiator system. SiO2 nanospheres (ca. 20 nm in diameter) were synthesized by the sol–gel method. The nanoparticles’ surface was modified with hexadecyltrimethoxysilane (Mod-SiO2Nps) in order to improve the interactions with the polymer. The polymerization activity increased as the proportion of p-methyl styrene was increased in the initial feed. With respect to the effect of the incorporation of nanoparticles in the reactions, the catalytic activity increased slightly in the presence of 5 wt% of nanospheres compared to neat copolymerization without any nanoparticles. Our studies achieved a convenient route through in situ polymerization, avoiding further treatment of the nanocomposite. The thermal stability of the PS increased with nanoparticle incorporation. The effect of SiO2-Npts on the catalyst’s activity and on the thermal properties of the resulting nanocomposites was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schellenberg J, Tomotsu N (2002) Syndiotactic polystyrene catalysts and polymerization. Prog Polym Sci 27:1925–1982

    Article  CAS  Google Scholar 

  2. Rabagliati FM, Quijada R, Cuevas MV, Terraza CA (1996) Polymerization of styrene by diphenylzinc-additive systems. Part 4: Ph2Zn–Metallocene–MAO systems. Polym Bull 37:13–19

    Article  CAS  Google Scholar 

  3. Rabagliati FM, Pérez M, Cancino R, Quijada R (1999) Polymerization of styrene by diphenylzinc additive systems. Part IX. New experiments with Ph2Zn–Met–MAO systems. Polym Int 48:681–684

    Article  CAS  Google Scholar 

  4. Shellenberg J (2009) Recent transition metal catalysts for syndiotactic polystyrene. Prog Polym Sci 34:688–718

    Article  Google Scholar 

  5. Rabagliati FM, Pérez MA, Quijada R (1998) Polymerization of styrene by diphenylzinc-additive system. Polym Bull 41:441–446

    Article  CAS  Google Scholar 

  6. Lin RH, Woo EM (2000) Melting behavior and identification of polymorphic crystals in syndiotactic polystyrene. Polymer 41:121

    Article  CAS  Google Scholar 

  7. Wang C, Hsu YC, Lo CF (2001) Melting behavior and equilibrium melting temperatures of syndiotactic polystyrene in α and β crystalline forms. Polymer 42:8447

    Article  CAS  Google Scholar 

  8. Rosa CD (1996) Crystal structure of the trigonal modification (α form) of syndiotactic polystyrene. Macromolecules 29:8460

    Article  Google Scholar 

  9. Cartier L, Okihara T, Lotzs B (1998) The α superstructure of syndiotactic polystyrene: a frustrated structure. Macromolecules 31:3303–3310

    Article  CAS  Google Scholar 

  10. Ishihara N (1995) Synthesis and properties of syndiotactic polystyrene. Macromol Symp 89:553–562

    Article  CAS  Google Scholar 

  11. Xu J, Zhao Y, Wang Q, Fan Z (2005) Non-isothermal crystallization kinetics of exfoliated and intercalated polyethylene/montmorillonite nanocomposites prepared by in situ polymerization. Eur Polym J 41:3011–3017

    Article  CAS  Google Scholar 

  12. Moncada E, Quijada R, Retuert J (2007) Nanoparticles prepared by the sol–gel method and their use in the formation of nanocomposites with polypropylene. Nanotechnology 18(33)

  13. Jongsomjit B, Panpranot J, Praserthdam P (2007) Effect of nanoscale SiO2 and ZrO2 as the fillers on the microstructure of LLDPE nanocomposites synthesized via in situ polymerization with zirconocene. Mater Lett 61(6):1376–1379

    Article  CAS  Google Scholar 

  14. Wang Q, Zhou Z, Song L, Xu H, Wang L (2004) Nanoscopic confinement effects on ethylene polymerization by intercalated silicate with metallocene catalyst. J Polym Sci Part A Polym Chem 42:38–43

    Article  CAS  Google Scholar 

  15. Zapata P, Quijada R, Benavente R (2011) In situ formation of nanocomposites based on polyethylene and sílica nanospheres. J Appl Polym Sci 119(3):1771–1780

    Article  CAS  Google Scholar 

  16. Benson S, Moore R (2010) Isothermal crystallization of lightly sulfonated syndiotactic polystyrene/montmorillonite clay nanocomposites. Polymer 51:5462–5472

    Article  CAS  Google Scholar 

  17. Qutubuddin F (2005) Swelling behavior of organoclays in styrene and exfoliation in nanocomposites. J Colloid Interface Sci 283:373–379

    Article  Google Scholar 

  18. Beraa O, Pilica B, Pavlicevica J, Jovicica M, Hollób B, Mészáros Szécsényib K, Spirkova M (2011) Preparation and thermal properties of polystyrene/silica nanocomposites. Thermochim Acta 515:1–5

    Article  Google Scholar 

  19. Song XY, Geng HP, Fang L (2006) The synthesis and characterization of polystyrene/magnetic polyhedral. Polymer 47:3049–3056

    Article  CAS  Google Scholar 

  20. Rıos-Dominguez H, Ruiz-Treviño FA, Contreras-Reyes R, González-Montiel A (2006) Synthesis and evaluation of gas transport properties in polystyrene–POSS membranes. J Membr Sci 271:94–100

    Article  Google Scholar 

  21. Wang G-H, Zhang L-M (2007) Reinforcement in thermal and viscoelastic properties of polystyrene by in situ incorporation of organophilic montmorillonite. Appl Clay Sci 38:17–22

    Article  Google Scholar 

  22. Chasteka T, Steina A, Macoskob C (2005) Hexadecyl-functionalized lamellar mesostructured silicates and aluminosilicates designed for polymer–clay nanocomposites. Part II: dispersion in organic solvents and in polystyrene. Polymer 46:4431–4439

    Article  Google Scholar 

  23. Su S, Jiang DD, Wilkie AC (2004) Novel polymerically-modified clays permit the preparation of intercalated and exfoliated nanocomposites of styrene and its copolymers by melt blending. Polym Degrad Stab 83:333–346

    Article  CAS  Google Scholar 

  24. Kumar S, Rath T, Mahaling RN, Das CK (2007) Processing and characterization of carbon nanofiber/syndiotactic polystyrene composites in the absence and presence of liquid crystalline. Polym Compos Part A 38:1304–1317

    Article  Google Scholar 

  25. Ma MC-C, Chen Y-J, Kuan H-C (2004) Polystyrene nanocomposite materials—preparation, mechanical, electrical and thermal properties, and morphology. J Appl Polym Sci 100:508–515

    Article  Google Scholar 

  26. Rabagliati FM, Pérez MA, Soto MA, Martínez de Ilarduya A, Muñoz-Guerra S (2001) Copolymerization of styrene by diphenylzinc-additive systems, copolymerization of styrene/p-tert-butylstyrene by Ph2Zn–metallocene–MAO systems. Eur Polym J 37:1001–1006

    Article  Google Scholar 

  27. Rabagliati FM, Pérez MA, Cancino RA, Soto MA, Rodríguez FJ, León AG, Ayal HA, Quijada R (2000) Polymerization of styrene bydiphenylzinc-additive systems. Part X. Homo-and copolymerization of styrene using Ph2Zn–metallocene–MAO system. Bol Soc Chil Quím 45(2):219–226

    Article  CAS  Google Scholar 

  28. Palza H, Vera J, Wilhelm M, Zapata P (2011) Spherulite growth rate in polypropylene/silica nanoparticle composites: effect of particle morphology and compatibilizer. Macromol Mater Eng 296:744–751

    Article  CAS  Google Scholar 

  29. Zapata PA, Palza H, Cruz LS, Lieberwirth I, Catalina F, Corrales T, Rabagliati FM (2013) Polyethylene and poly(ethylene-co-1-octadecene) composites with TiO2 based nanoparticles by metallocenic “in situ” polymerization. Polymer 54:2690–2698

    Article  CAS  Google Scholar 

  30. Zapata PA, Palza H, Delgado K, Rabagliati FM (2012) Novel antimicrobial polyethylene composites prepared by metallocenic “in situ” polymerization with TiO2 based nanoparticles. J Polym Sci, Part A: Polym Chem 50:4055–4062

    Article  CAS  Google Scholar 

  31. Rabagliati FM, Caro CJ, Pérez MA (2002) Copolymeriztion of styrene by diphenylzinc-additive systems. Part III. Copolymerization of styrene/para-methylstyrene using CpTiCl3–MAO and Ph2Zn–CpTiCl3–MAO initiator systems. Bol Soc Chil Quím 47:137–144

    Article  CAS  Google Scholar 

  32. Rabagliati FM, Perez MA, Cancino RJ, Soto MA, Rodríguez FJ, Caro CJ (2003) Styrene copolymerization using diphenylzinc-additive initiator systems: styrene/p-substituted styrenes. Macromol Symp 192:13–23

    Article  CAS  Google Scholar 

  33. Zhaolei L, Xiaoming J, Huanhuan G, Dongshan Z, Wenbing H (2014) Fast-scan chip-calorimeter measurement on the melting behaviors of melt-crystallized syndiotactic polystyrene. J Therm Anal Calorim 118:1531–1536

    Article  Google Scholar 

  34. Ciardelli F, Coiali S, Passaglia E, Pucci A, Ruggeri G (2008) Nanocomposites based on polyolefins and functional thermoplastic materials. Polym Int 57:805–836

    Article  CAS  Google Scholar 

  35. Wang C, Huang C-L, Chen Y-C, Hwang G-L, Tsai S-J (2008) Carbon nanocapsules-reinforced syndiotactic polystyrene nanocomposites: crystallization and morphological features. Polymer 49:5564–5574

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from DICYT Project, código 051641ZR_DAS, Vicerrectoría de Investigación, Desarrollo e Innovación, to Dr. P.A. Zapata, and from the Universidad de Santiago de Chile, and partial financial support by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) to Dr. F.M, Rabagliati under Project 108.5061, are gratefully acknowledged and financial support from MINECO Project MAT2016-79869_C2-1-P (AEI/FEDER, UE) to R. Benavente. Thanks are due to colleagues S. Muñoz-Guerra and A., Martínez de Ilarduya from Departament d’Enginyeria Química, ETSEIB, Universitat Politécnica de Catalunya, UPC, Barcelona, Spain, for performing NMR analysis of obtained polymers, P(S-co-p-MeS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paula A. Zapata or Franco M. Rabagliati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapata, P.A., Zamora, P., Canales, D.A. et al. Preparation of nanocomposites based on styrene/(p-methylstyrene) and SiO2 nanoparticles, through a metallocene–MAO initiating system. Polym. Bull. 76, 1041–1058 (2019). https://doi.org/10.1007/s00289-018-2420-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2420-0

Keywords

Navigation