Advertisement

Polymer Bulletin

, Volume 76, Issue 2, pp 989–1006 | Cite as

Baicalein-p-sulfonatocalix[n]arenes inclusion complexes: characterization, antioxidant ability and stability

  • Jianbin ChaoEmail author
  • Miao Xu
  • Xiaolu Wang
  • Zhiqiang Guo
Original Paper
  • 70 Downloads

Abstract

The baicalein (Ba) is extracted from the roots of traditional Chinese medicine plant, Scutellaria baicalensis Georgi. Ba has attracted more attention for the high medicinal value, but the low oxidation resistance, poor thermal and photostability prevent its application. In this paper, inclusion complexes of Ba and p-sulfonatocalix[n]arenes (SCXn, n = 4, 6, 8) were prepared and characterized. The prepared complexes were characterized by fluorescence spectroscopy, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy (1H NMR), and atomic force microscopy. The fluorescence titration experiment confirmed Ba and SCXn formed inclusion complexes at a stoichiometry of 1:1. A cap-type inclusion mode between the host and guest molecules could infer from 1H NMR spectroscopy. In addition, antioxidant activity, thermal stability and photostability of Ba were enhanced by forming inclusion complexes with SCXn which were favorable to improving the bioavailability of Ba. Finally, toxicity studies showed that the toxicity of these inclusion compounds Ba/SCXn was not remarkably different from that of the Ba, which was advantageous for the application and development of the Ba/SCXn.

Keywords

Baicalein p-Sulfonatocalix[n]arenes Inclusion complex Antioxidant activity 

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 21472118,21672131), the Program for the Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Shanxi (No. 2013802), Talents Support Program of Shanxi Province (No. 2014401), Shanxi Province Outstanding Youth Fund (No. 2014021002).

References

  1. 1.
    Liweber M (2009) New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin. Baicalein and Baicalin. Cancer Treat Rev 35(1):57–68CrossRefGoogle Scholar
  2. 2.
    Butenko IG, Gladtchenko SV, Galushko SV (1993) Anti-inflammatory properties and inhibition of leukotriene C4 biosynthesis in vitro by flavonoid baicalein from Scutellaria baicalensis georgy roots. Inflamm Res 39(1):C49–C51Google Scholar
  3. 3.
    Miyamoto K, Katsuragi T, Abdu P, Furukawa T (1997) Effects of baicalein on prostanoid generation from the lung and contractile responses of the trachea in Guinea pig. Am J Chin Med 25(1):37–50CrossRefGoogle Scholar
  4. 4.
    Kimura Y, Matsushita N, Yokoi-Hayashi K, Okuda H (2001) Effects of baicalein isolated from Scutellaria baicalensis Radix on adhesion molecule expression induced by thrombin and thrombin receptor agonist peptide in cultured human umbilical vein endothelial cells. Planta Med 67(4):331CrossRefGoogle Scholar
  5. 5.
    Shao ZH, Li CQ, Vanden Hoek TL, Becker LB, Schumacker PT, Wu JA, Attele AS, Yuan CS (1999) Extract from Scutellaria baicalensis Georgi attenuates oxidant stress in cardiomyocytes. J Mol Cell Cardiol 31(10):1885–1895CrossRefGoogle Scholar
  6. 6.
    Shao ZH, Hoek Vanden, Qin Y, Becker LB, Schumacker PT, Li CQ, Dey L, Barth E, Halpern H, Rosen GM, Yuan CS (2002) Baicalein attenuates oxidant stress in cardiomyocytes. Am J Physiol Heart C 282(3):H999–H1006CrossRefGoogle Scholar
  7. 7.
    Gao Z, Huang K, Xu H (2001) Protective effects of flavonoids in the roots of Scutellaria baicalensis Georgi against hydrogen peroxide-induced oxidative stress in HS-SY5Y cells. Pharmacol Res 43(2):173–178CrossRefGoogle Scholar
  8. 8.
    Liu H, Dong YH, Gao YT, Du ZP, Wang YT, Cheng P, Chen A, Huang H (2016) The fascinating effects of Baicalein on cancer: a review. Int J Mol Sci 17(10):1681CrossRefGoogle Scholar
  9. 9.
    Naveenkumar C, Raghunandakumar S, Asokkumar S, Binuclara J, Rajan B, Premkumar T, Devaki T (2014) Mitigating role of baicalein on lysosomal enzymes and xenobiotic metabolizing enzyme status during lung carcinogenesis of Swiss albino mice induced by benzo(a)pyrene. Fundam Clin Pharmacol 28(3):310–322CrossRefGoogle Scholar
  10. 10.
    Xu XM, Yuan GJ, Deng JJ, Guo HT, Xiang M, Fang Y, Ge W, Chen SY (2012) Inhibition of 12-lipoxygenase reduces proliferation and induces apoptosis of hepatocellular carcinoma cells in vitro and in vivo. Hepatob Pancreat Dis 11(2):193–202CrossRefGoogle Scholar
  11. 11.
    Liang RR, Zhang S, Qi JA, Wang ZD, Li J, Liu PJ, Huang C, Le XF, Yang J, Li ZF (2012) Preferential inhibition of hepatocellular carcinoma by the flavonoid Baicalein through blocking MEK-ERK signaling. Int J Oncol 41(3):969–978CrossRefGoogle Scholar
  12. 12.
    Pailleret A, Herzog G, Arrigan DWM (2003) Electrochemical activity of phenolic calixarenes. Electrochem Commun 5(1):68–72CrossRefGoogle Scholar
  13. 13.
    Wieser C, Dieleman CB, Matt D (1997) ChemInform abstract: calixarene and resorcinarene ligands in transition metal chemistry. Cheminform 165(11):93–161Google Scholar
  14. 14.
    Gupta VK, Sethi B, Sharma RA, Agarwal S, Bharti A (2013) Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. J Mol Liq 177(8):114–118CrossRefGoogle Scholar
  15. 15.
    Chao JB, Li ZQ, Liu YH, Zhang YB, Guo ZQ, Zhang BT, Wang XG (2016) Investigation of the inclusion interaction of p-sulfonatocalix[6]arene with trimebutine maleate. J Mol Liq 213:173–178CrossRefGoogle Scholar
  16. 16.
    Guo DS, Liu Y (2012) Calixarene-based supramolecular polymerization in solution. Chem Soc Rev 41(18):5907–5921CrossRefGoogle Scholar
  17. 17.
    Yang L, Ran X, Cai L, Li Y, Zhao H, Li CP (2016) Calix[8]arene functionalized single-walled carbon nanohorns for dual-signalling electrochemical sensing of aconitine based on competitive host-guest recognition. Biosens Bioelectron 83(15):347–352Google Scholar
  18. 18.
    Shinkai S, Mori S, Tsubaki T, Sone T, Manabe O (1984) New water-soluble host molecules derived from calix[6]arene. Tetrahedron Lett 25(46):5315–5318CrossRefGoogle Scholar
  19. 19.
    Arduini A, Pochini A, Reverberi S, Ungaro R (1984) ChemInform Abstract: p-tert-butylcalix(4)arene tetracarboxylic acid. A water soluble calixarene in a cone structure. Chemischer Informationsdienst 15(51)Google Scholar
  20. 20.
    Rondelez Y, Sénèque O, Rager MN, Duprat AF, Reinaud O (2000) Biomimetic copper(I)–CO complexes: a structural and dynamic study of a cali. Chemistry 6(22):4218–4226CrossRefGoogle Scholar
  21. 21.
    Ukhatskaya EV, Kurkov SV, Matthews SE, Loftsson T (2013) Encapsulation of drug molecules into calix[n]arene nanobaskets. Role of aminocalix[n]arenes in biopharmaceutical field. J Pharma Sci-us 102(10):3485–3512CrossRefGoogle Scholar
  22. 22.
    Guo DS, Liu Y (2014) Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications. Acc Chem Res 47(7):1925–1934CrossRefGoogle Scholar
  23. 23.
    Coleman AW, Jebors S, Cecillon S, Perret P, Garin D, Marti-Battle D, Moulin M (2008) Toxicity and biodistribution of para-sulfonato-calix[4]arene in mice. New J Chem 32(5):780–782CrossRefGoogle Scholar
  24. 24.
    Perret F, Coleman AW (2011) Biochemistry of anionic calix[n]arenes. Chem Commun 47(26):7303–7319CrossRefGoogle Scholar
  25. 25.
    Du Q, Chen CP, Du LM (2015) Spectrofluorimetric study on the inclusion behavior of p-sulfonated calix [4, 6, 8] arene with cocaine hydrochloride. Anal Chem Indian J 15(8):281–289Google Scholar
  26. 26.
    Du Q, Chen CP, Liu HL, Du LM, You JC, Chang YF (2015) Spectrofluorimetric study on inclusion behaviour of p-sulfonated calix[4,6]arene with 1,10-phenanthroline. Asian J Chem 27(7):2431–2436CrossRefGoogle Scholar
  27. 27.
    Brandwilliams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28(1):25–30CrossRefGoogle Scholar
  28. 28.
    Monika SIA, Samo AE, Andrej SM (2008) Effect of β-cyclodextrin on antioxidant activity of coumaric acids. Food Chem 110(3):636–642CrossRefGoogle Scholar
  29. 29.
    Liu Y, Han BH, Chen YT (2002) Molecular recognition and complexation thermodynamics of dye guest molecules by modified cyclodextrins and calixarenesulfonates. J Phys Chem B 106(18):4678–4687CrossRefGoogle Scholar
  30. 30.
    Inoue Y, Yamamoto K, Wada T, Everitt S, Gao XM, Hou ZJ, Tong LH, Jiang SK, Wu HM (1998) Inclusion complexation of (cyclo)alkanes and (cyclo)alkanols with 6-O-modified cyclodextrins[J]. J Chem Soc, Perkin Trans 2(8):1807–1816CrossRefGoogle Scholar
  31. 31.
    Natella F, Nardini M, Felice MD, Scaccini C (1999) Benzoic and cinnamic acid derivatives as antioxidants: structure–activity relation. J Agric Food Chem 47(4):1453–1459CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jianbin Chao
    • 1
    Email author
  • Miao Xu
    • 1
    • 2
  • Xiaolu Wang
    • 1
    • 2
  • Zhiqiang Guo
    • 1
  1. 1.Research Institute of Applied ChemistryShanxi UniversityTaiyuanPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringShanxi UniversityTaiyuanPeople’s Republic of China

Personalised recommendations