Skip to main content
Log in

Modification and thermal properties of syndiotactic-1,2-polybutadiene

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Side chain of syndiotactic-1,2-polybutadiene (SPBU) has been modified by means of hydrogenation, hydrosilylation with trialkylsilane compounds, or thiol–ene reaction with alkyl thiol compounds. Crystallization temperature (Tc) of the resulting polymers, which was detected on the cooling process from melting state, decreased with increasing the modification ratio. The molecular bulkiness of the compounds affected the degree of the Tc depression with increasing the modification ratio. The modification of SPBU with triphenyl silane increased glass transition temperature of the polymers. Isothermally crystallized SPBU samples modified by butane thiol (BT) showed two melting peaks derived from first crystallization (Tm1, higher temperature) and second crystallization (Tm2, lower temperature). The Tm1 decreased with increasing the modification ratio, whereas the Tm2 was almost independent of the modification ratio. The equilibrium melting temperatures of the Tm1s of the SPBU samples modified by BT were decreased with increasing the modification ratio. By contrast, the modification ratio did not affect the equilibrium melting temperatures of the Tm2s. Slopes in Hoffman–Week’s plot the modified SPBU samples indicated that Tm1 and Tm2 were originated from lamellar crystal and fringed micelle, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Obata Y, Homma C, Tosaki C (1975) Bulk properties of syndiotactic 1,2-polybutadiene. III. Melting and crystallization properties. Polym J 7:312–319. https://doi.org/10.1295/polymj.7.312

    Article  CAS  Google Scholar 

  2. Sasaki T, Sunago H, Hoshikawa T (2003) Multiple melting behavior of syndiotactic 1,2-polybutadiene. Polym Eng Sci 43:629–638. https://doi.org/10.1002/pen.10051

    Article  CAS  Google Scholar 

  3. Bertini F, Canetti M, Ricci G (2004) Crystallization and melting behavior of 1,2-syndiotactic polybutadiene. J Appl Polym Sci 92:1680–1687. https://doi.org/10.1002/app.20115

    Article  CAS  Google Scholar 

  4. Ren M, Chen Q, Song J, Zhang H, Sun X, Mo Z, Zhang H, Zhang X, Jiang L (2005) Crystallization kinetics and melting behavior of syndiotactic 1,2-polybutadiene. J Polym Sci Part B Polym Phys 43:553–561. https://doi.org/10.1002/polb.20361

    Article  CAS  Google Scholar 

  5. Napolitano R, Pirozzi B, Esposito S (2006) Structural studies on syndiotactic 1,2-poly(1,3-butadiene) by x-ray measurements and molecular mechanics calculations. Macromol Chem Phys 207:503–510. https://doi.org/10.1002/macp.200500507

    Article  CAS  Google Scholar 

  6. Napolitano R, Pirozzi B, Esposito S (2006) Thermal expansion coefficients of the axes of the unit cell of syndiotactic 1,2-poly(1,3-butadiene). Macromol Symp 234:111–116. https://doi.org/10.1002/masy.200650215

    Article  CAS  Google Scholar 

  7. Naga N, Mizunuma K, Sadatoshi H, Kakugo M (1997) Properties and crystalline structures of syndiotactic poly(propylene-co-1-butene). Macromolecules 30:2197–2200. https://doi.org/10.1021/ma961438f

    Article  CAS  Google Scholar 

  8. Naga N, Mizunuma K, Sadatoshi H, Kakugo M (2000) Isothermal crystallization of syndiotactic poly(propylene-co-olefin)s. Polymer 41:203–209. https://doi.org/10.1016/S0032-3861(99)00163-9

    Article  CAS  Google Scholar 

  9. Naga N, Sakurai T, Furukawa H (2015) Structure and formation process of syndiotactic-polystyrene or styrene-based copolymer-organic solvent gels studied using scanning microscopic light scattering. Polym J 47:45–52. https://doi.org/10.1038/pj.2014.85

    Article  CAS  Google Scholar 

  10. Natta G, Corradini P (1956) The structure of crystalline 1,2-polybutadiene and of other “syndyotactic polymers. J Polym Sci 20:251–266. https://doi.org/10.1002/pol.1956.120209503

    Article  CAS  Google Scholar 

  11. Abdullin MI, Glazyrin AB, Kukovinets OS, Basyrov AA, Zaikov GE (2016) Chemical modification of syndiotactic 1,2-polybutadiene. In: Berlin AA, Joswik R, Ivanovich VN (eds) The chemistry and physics of engineering materials, Modern analytical methodologies, vol 1. Apple Academic Press Inc., Oakville, pp 1–19

    Google Scholar 

  12. Guo X, Farwaha R, Rempel GL (1990) Catalytic hydrosilylation of diene-based polymers. 1. Hydrosilylation of polybutadiene. Macromolecules 23:5047–5054. https://doi.org/10.1021/ma00226a001

    Article  CAS  Google Scholar 

  13. Rendon S, Burghardt WR, Auad ML, Kornfield JA (2007) Shear-induced alignment of smectic side group liquid crystalline polymers. Macromolecules 40:6624–6630. https://doi.org/10.1021/ma062912c

    Article  CAS  Google Scholar 

  14. You L, Schlaad H (2006) An easy way to sugar-containing polymer vesicles or glycosomes. J Am Chem Soc 128:13336–13337. https://doi.org/10.1021/ja064569x

    Article  CAS  PubMed  Google Scholar 

  15. Wickard TD, Nelsen E, Madaan N, Brummelhuis NT, Diehl C, Schlaad H, Davis RC, Linford MR (2010) Attachment of polybutadienes to hydrogen-terminated silicon and post-derivatization of the adsorbed species. Langmuir 26:1923–1928. https://doi.org/10.1021/la902760r

    Article  CAS  PubMed  Google Scholar 

  16. Hordyjewicz-Baran Z, You L, Smarsly B, Sigel R, Schlaad H (2007) Bioinspired polymer vesicles based on hydrophilically modified polybutadienes. Macromolecules 40:3901–3903. https://doi.org/10.1021/ma070347n

    Article  CAS  Google Scholar 

  17. Ameri David RL, Kornfield JA (2008) Facile, efficient routes to diverse protected thiols and to their deprotection and addition to create functional polymers by thiol–ene coupling. Macromolecules 41:1151–1161. https://doi.org/10.1021/ma0718393

    Article  CAS  Google Scholar 

  18. Korthals B, Morant-Miñana MC, Schmid M, Mecking S (2010) Functionalization of polymer nanoparticles by thiol–ene addition. Macromolecules 43:8071–8078. https://doi.org/10.1021/ma100966w

    Article  CAS  Google Scholar 

  19. ten Brummelhuis N, Diehl C, Schlaad H (2008) Thiol–ene modification of 1,2-polybutadiene using UV light or sunlight. Macromolecules 41:9946–9947. https://doi.org/10.1021/ma802047w

    Article  CAS  Google Scholar 

  20. Lotti L, Coiai S, Ciardelli F, Galimberti M, Passaglia E (2009) Thiol–ene radical addition of l-cysteine derivatives to low molecular weight polybutadiene. Macromol Chem Phys 210:14711483. https://doi.org/10.1002/macp.200900164

    Article  CAS  Google Scholar 

  21. Justynska J, Hordyjewicz Z, Schlaad H (2005) Toward a toolbox of functional block copolymers via free-radical addition of mercaptans. Polymer 46:12057–12064. https://doi.org/10.1016/j.polymer.2005.10.104

    Article  CAS  Google Scholar 

  22. 1H NMR spectra of SPBU samples modified by TES (TES-4) or DMPS (DMPS-4) are available in Supporting Information

  23. Analysis method to determine the molecular structure of the modified samples is precisely described in Supporting Information

  24. DSC profiles of SPBU samples on the cooling process are available in Supporting Information

  25. Hosada S, Nomura H, Gotoh Y, Kihara H (1990) Degree of branch inclusion into the lamellar crystal for various ethylene/α-olefin copolymers. Polymer 31:1999–2005. https://doi.org/10.1016/0032-3861(90)90030-3

    Article  Google Scholar 

  26. DSC profiles of SPBU samples on the heating process are available in Supporting Information

  27. Hoffman JD, Week JJ (1962) Melting process and equilibrium melting temperature of poly(chlorotrifluoroethylene). J Res Natl Bur. Stand A Phys Chem 66:13–28

    Article  Google Scholar 

  28. Hoffman JD (1964) Theoretical aspects of polymer crystallization with chain folds: bulk polymers. SPE Trans 4:315–362. https://doi.org/10.1002/pen.760040413

    Article  CAS  Google Scholar 

  29. Mastumoto T, Ikegami N, Ehara, Kawai T, Maeda H (1970) Structural change of poly(ethylene terephthalate) after annealing. J Chem Soc Jpn Ind Chem Sect 73:2441–2446. https://doi.org/10.1246/nikkashi1898.73.11_2441

    Article  Google Scholar 

  30. Wang C, Chu MC, Lin TL, Lai SM, Shih HH, Yang JC (2001) Microstructures of a highly short-chain branched polyethylene. Polymer 42:1733–1741. https://doi.org/10.1016/S0032-3861(00)00566-8

    Article  CAS  Google Scholar 

  31. Kawai T, Ehara K, Sasano H, Kamide K (1968) Thermal analysis of the extended chain crystallization. Makromol Chem 111:271–276. https://doi.org/10.1002/macp.1968.021110125

    Article  CAS  Google Scholar 

  32. Asbach GI, Kilian HG, Müller FH (1967) Fractions of linear polyethylene as moleculary dispersed eutectic systems. J Polym Sci Part C Polym Symp 18:133–148. https://doi.org/10.1002/polc.5070180112

    Article  Google Scholar 

  33. Okui N, Kawai T (1972) Crystallization of ethylene/vinylacetate random copolymers. Makromol Chem 154:161–176. https://doi.org/10.1002/macp.1972.021540115

    Article  CAS  Google Scholar 

  34. WAXD profiles of BT-2 acquired on the heating process are available in Supporting Information

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naofumi Naga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naga, N., Ishinoda, S., Ishiguro, H. et al. Modification and thermal properties of syndiotactic-1,2-polybutadiene. Polym. Bull. 76, 241–257 (2019). https://doi.org/10.1007/s00289-018-2380-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2380-4

Keywords

Navigation