Skip to main content
Log in

Enhanced removal of methyl violet 6B cationic dye from aqueous solutions using calcium alginate hydrogel grafted with poly (styrene-co-maleic anhydride)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Calcium alginate hydrogel was grafted with poly (styrene-co-maleic anhydride) synthetic polymer (PSMA) and used as an adsorbent for the effective removal of methyl violet 6B cationic dye from aqueous solutions. The characteristics of native and grafted alginate hydrogels were investigated using FTIR, Zetasizer and TGA/DSC. The carboxyl groups’ content and the swelling properties were determined as well. Batch adsorption experiments were conducted as a function of initial dye concentration, adsorbent dosage, solution ionic strength, solution pH, time of contact and temperature. Results revealed that grafting of PSMA onto alginate improved the removal percentage of the dye up to 30%. The highest adsorption capacity of the dye was obtained at a temperature of 40 °C, a pH range of 5–11 and at lower solution ionic strengths. The kinetics of adsorption followed the pseudo-second-order model and the equilibrium data could be better described by the Langmuir isotherm. The maximum adsorption capacity was found to be 109.9 mg/g suggesting the promising potential of our low-cost adsorbent for the removal of cationic dyes from aqueous solutions. A desorption study was carried out where the adsorbent showed high desorption characteristics and it could be reused at least for five consecutive cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

S %:

The swelling percentage

W s :

The weight of the swollen dried beads

W o :

The weight of the dried beads

C NaOH :

The concentration of the NaOH solution (mol/L)

V NaOH :

The volume of the NaOH solution (L)

C HCl :

The concentration of the HCl solution (mol/L)

V HCl :

The volume of HCl spent in the titration of the excessive non-reacted base (L)

m :

The dry mass of the beads (g)

C o :

The initial methyl violet concentration (mg/L)

C t :

The methyl violet concentration at time t (mg/L)

m :

The mass of adsorbent (g)

V :

The volume of solution (L)

C e :

The methyl violet concentration at equilibrium (mg/L)

q t :

The adsorption capacities of methyl violet at time (mg/g)

q e :

The adsorption capacities of methyl violet at equilibrium (mg/g)

k 1 :

The pseudo-first-order rate constant of adsorption (min−1)

k 2 :

The pseudo-second-order rate constant of adsorption (g mg−1 min−1)

R 2 :

The linear regression correlation coefficient

k d :

The intraparticle diffusion rate constant (mg g−1 min−1/2)

C :

A constant related to the thickness of the boundary layer (mg/L)

q max :

A constant stands for the maximum adsorption capacity (mg/g)

k L :

Langmuir isotherm constant related to the affinity of the adsorbate with the adsorbent (L/mg)

R L :

A dimensionless separation factor that indicates the type of Langmuir isotherm whether it is favorable, unfavorable or linear

k F :

The Freundlich isotherm constant (mg(1−1/n) L(1/n) g−1)

n :

A constant related to the adsorption intensity and the degree of heterogeneity of the adsorbent surface

K c :

The dimensionless equilibrium constant

ΔS°:

The standard entropy change during the adsorption process (J mol−1 K−1)

ΔH°:

The standard enthalpy change during the adsorption process (J/mol)

ΔG°:

The standard Gibbs free energy change during the adsorption process (J/mol)

R :

The universal gas constant (8.314 J mol−1 K−1)

T :

The temperature (K)

E a :

The activation energy of an adsorption process (J/mol)

A :

A temperature-independent constant called frequency factor (g/mg min)

References

  1. Alqaragully MB (2014) Removal of textile dyes (maxilon blue, and methyl orange) by date stones activated carbon. Int J Adv Res Chem Sci 1(1):8–59

    Google Scholar 

  2. Dawood SaS T (2014) Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents. J Chem Process Eng 1(104):1–11

    Google Scholar 

  3. Mani S, Bharagava RN (2016) Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety, vol 237. In: Reviews of environmental contamination and toxicology. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-23573-8_4

  4. Pereira L, Alves M (2012) Dyes-Environmental impact and remediation. Environmental protection strategies for sustainable development. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-007-1591-2_4

    Book  Google Scholar 

  5. Li Y, Nie W, Chen P, Zhou Y (2016) Preparation and characterization of sulfonated poly(styrene-alt-maleic anhydride) and its selective removal of cationic dyes. Colloids Surf Physicochem Eng Asp 499:46–53. https://doi.org/10.1016/j.colsurfa.2016.04.009

    Article  CAS  Google Scholar 

  6. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70. https://doi.org/10.1016/j.progpolymsci.2004.11.002

    Article  CAS  Google Scholar 

  7. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  8. Sudha PN, Gomathi T, Vinodhini PA, Nasreen K (2014) Chapter Seven: Marine carbohydrates of wastewater treatment, vol 73. In Advances in food and nutrition research. Academic. doi:http://dx.doi.org/10.1016/B978-0-12-800268-1.00007-X

  9. Kyzas GZ, Bikiaris DN, Mitropoulos AC (2017) Chitosan adsorbents for dye removal: a review. Polym Int 66(12):1800–1811. https://doi.org/10.1002/pi.5467

    Article  CAS  Google Scholar 

  10. Oladoja NA, Unuabonah EI, Amuda OS, Kolawole OM (2017) Polysaccharides as a green and sustainable resources for water and wastewater treatment. Springer, New York

    Book  Google Scholar 

  11. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: A review. J Adv Res 6(2):105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Li H, Cao M, Shi L, Chen C (2015) Adsorption of basic dyes on β-cyclodextrin functionalized poly (styrene-alt-maleic anhydride). Sep Sci Technol 50(7):947–957. https://doi.org/10.1080/01496395.2014.978461

    Article  CAS  Google Scholar 

  13. Zhou Y, Zhang M, Hu X, Wang X, Niu J, Ma T (2013) Adsorption of cationic dyes on a cellulose-based multicarboxyl adsorbent. J Chem Eng Data 58(2):413–421. https://doi.org/10.1021/je301140c

    Article  CAS  Google Scholar 

  14. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130. https://doi.org/10.1016/j.carbpol.2014.07.007

    Article  CAS  PubMed  Google Scholar 

  15. Ghorai S, Sarkar A, Raoufi M, Panda AB, Schönherr H, Pal S (2014) Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl Mater Int 6(7):4766–4777. https://doi.org/10.1021/am4055657

    Article  CAS  Google Scholar 

  16. Güçlü G, Keleş S (2007) Removal of basic dyes from aqueous solutions using starch-graft-acrylic acid copolymers. J Appl Polym Sci 106(4):2422–2426. https://doi.org/10.1002/app.26778

    Article  CAS  Google Scholar 

  17. J-s Yang, S-y Han, Yang L, H-c Zheng (2016) Synthesis of beta-cyclodextrin-grafted-alginate and its application for removing methylene blue from water solution. J Chem Technol Biotechnol 91(3):618–623. https://doi.org/10.1002/jctb.4612

    Article  CAS  Google Scholar 

  18. Tsai B, Garcia-Valdez O, Champagne P, Cunningham M (2017) Poly(poly(ethylene glycol) methyl ether methacrylate) grafted chitosan for dye removal from water. Processes 5(1):12

    Article  Google Scholar 

  19. Xu B, Zheng H, Zhou H, Wang Y, Luo K, Zhao C, Peng Y, Zheng X (2018) Adsorptive removal of anionic dyes by chitosan-based magnetic microspheres with pH-responsive properties. J Mol Liq. https://doi.org/10.1016/j.molliq.2018.02.061

    Article  Google Scholar 

  20. Chen X, Liu L, Luo Z, Shen J, Ni Q, Yao J (2018) Facile preparation of a cellulose-based bioadsorbent modified by hPEI in heterogeneous system for high-efficiency removal of multiple types of dyes. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2018.02.009

    Article  Google Scholar 

  21. Sharma J, Sukriti Anand P, Pruthi V, Chaddha AS, Bhatia J, Kaith BS (2017) RSM-CCD optimized adsorbent for the sequestration of carcinogenic rhodamine-B: kinetics and equilibrium studies. Mater Chem Phys 196:270–283. https://doi.org/10.1016/j.matchemphys.2017.04.042

    Article  CAS  Google Scholar 

  22. Draget KI, Smidsrød O, Skjåk-Bræk G (2005) Alginates from algae. Biopolymers online. Wiley, New York. https://doi.org/10.1002/3527600035.bpol6008

    Book  Google Scholar 

  23. Mahmoodi NM (2011) Equilibrium, kinetics, and thermodynamics of dye removal using alginate in binary systems. J Chem Eng Data 56(6):2802–2811. https://doi.org/10.1021/je101276x

    Article  CAS  Google Scholar 

  24. Aravindhan R, Fathima NN, Rao JR, Nair BU (2007) Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads. Colloids Surf Physicochem Eng Asp 299(1–3):232–238. https://doi.org/10.1016/j.colsurfa.2006.11.045

    Article  CAS  Google Scholar 

  25. Mahmoodi NM, Hayati B, Arami M (2012) Kinetic, equilibrium and thermodynamic studies of ternary system dye removal using a biopolymer. Ind Crops Prod 35(1):295–301. https://doi.org/10.1016/j.indcrop.2011.07.015

    Article  CAS  Google Scholar 

  26. van Wijk J, van Deventer N, Harmzen E, Meuldijk J, Klumperman B (2014) Formation of hybrid poly (styrene-co-maleic anhydride)-silica microcapsules. J Mater Chem B 2(30):4826–4835. https://doi.org/10.1039/C4TB00473F

    Article  Google Scholar 

  27. Abo-Baker E, Elkholy SS, Elsabee MZ (2015) Modified poly (styrene maleic anhydride) copolymer for the removal of toxic metal cations from aqueous solutions. Am J Polym Sci 5(3):55–64

    CAS  Google Scholar 

  28. Chen S, Zhang J, Zhang C, Yue Q, Li Y, Li C (2010) Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination 252(1–3):149–156. https://doi.org/10.1016/j.desal.2009.10.010

    Article  CAS  Google Scholar 

  29. Bouasla C, Samar ME-H, Ismail F (2010) Degradation of methyl violet 6B dye by the Fenton process. Desalination 254(1–3):35–41. https://doi.org/10.1016/j.desal.2009.12.017

    Article  CAS  Google Scholar 

  30. Karnitz O Jr, Gurgel LVA, de Melo JCP, Botaro VR, Melo TMS, de Freitas Gil RP, Gil LF (2007) Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour Technol 98(6):1291–1297. https://doi.org/10.1016/j.biortech.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  31. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  32. Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34(3):735–742. https://doi.org/10.1016/S0043-1354(99)00232-8

    Article  CAS  Google Scholar 

  33. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89(2):31–60

    Google Scholar 

  34. Iqbal MZ, Abdala AA (2013) Thermally reduced graphene: synthesis, characterization and dye removal applications. RSC Adv 3(46):24455–24464. https://doi.org/10.1039/C3RA43914C

    Article  CAS  Google Scholar 

  35. Foo K, Hameed B (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10

    Article  CAS  Google Scholar 

  36. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38(11):2221–2295. https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  37. Hameed BH (2008) Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. J Hazard Mater 154(1–3):204–212. https://doi.org/10.1016/j.jhazmat.2007.10.010

    Article  CAS  PubMed  Google Scholar 

  38. Freundlich HMF (1906) Uber die adsorption in losungen. Z Phys Chem 57(A):385

    CAS  Google Scholar 

  39. Hasley GD (1952) The role of surface heterogeneity. Adv Catal 4:259–269

    Google Scholar 

  40. Xu J, Wang L, Zhu Y (2012) Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28(22):8418–8425. https://doi.org/10.1021/la301476p

    Article  CAS  PubMed  Google Scholar 

  41. Zhou X, Zhou X (2014) The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation. Chem Eng Commun 201(11):1459–1467. https://doi.org/10.1080/00986445.2013.818541

    Article  CAS  Google Scholar 

  42. Saha P, Chowdhury S (2011) Insight into adsorption thermodynamics. INTECH Open Access Publisher, London

    Book  Google Scholar 

  43. Li Y, Liu F, Xia B, Du Q, Zhang P, Wang D, Wang Z, Xia Y (2010) Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J Hazard Mater 177(1–3):876–880. https://doi.org/10.1016/j.jhazmat.2009.12.114

    Article  CAS  PubMed  Google Scholar 

  44. Li P, Dai Y-N, Zhang J-P, Wang A-Q, Wei Q (2008) Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci 4(3):221–228

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sartori C, Finch DS, Ralph B, Gilding K (1997) Determination of the cation content of alginate thin films by FTi.r. spectroscopy. Polymer 38(1):43–51. https://doi.org/10.1016/S0032-3861(96)00458-2

    Article  CAS  Google Scholar 

  46. Barra GMO, Crespo JS, Bertolino JR, Soldi V, Pires ATN (1999) Maleic anhydride grafting on epdm: qualitative and quantitative determination. J Braz Chem Soc 10:31–34

    Article  CAS  Google Scholar 

  47. Ferreira PJ, Gamelas JA, Moutinho IM, Ferreira AG, Gómez N, Molleda C, Figueiredo MM (2009) Application of FT-IR-ATR spectroscopy to evaluate the penetration of surface sizing agents into the paper structure. Ind Eng Chem Res 48(8):3867–3872. https://doi.org/10.1021/ie801765c

    Article  CAS  Google Scholar 

  48. Teacă C-A, Bodîrlău R, Spiridon I (2014) Maleic anhydride treatment of softwood-effect on wood structure and properties. Cellul Chem Technol 48(9–10):863–868

    Google Scholar 

  49. Işıklan N, Kurşun F, İnal M (2010) Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide. Carbohydr Polym 79(3):665–672. https://doi.org/10.1016/j.carbpol.2009.09.021

    Article  CAS  Google Scholar 

  50. Teixeira VF, Pereira NR, Waldman WR, Avila AL, Perez VH, Rodriguez RJ (2014) Ion exchange kinetics of magnetic alginate ferrogel beads produced by external gelation. Carbohydr Polym 111:198–205. https://doi.org/10.1016/j.carbpol.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  51. Zhang J, Ji Q, Shen X, Xia Y, Tan L, Kong Q (2011) Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant calcium alginate fibre. Polym Degrad Stab 96(5):936–942. https://doi.org/10.1016/j.polymdegradstab.2011.01.029

    Article  CAS  Google Scholar 

  52. Ahmad R (2009) Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J Hazard Mater 171(1–3):767–773. https://doi.org/10.1016/j.jhazmat.2009.06.060

    Article  CAS  PubMed  Google Scholar 

  53. Bulut Y, Aydın H (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194(1–3):259–267. https://doi.org/10.1016/j.desal.2005.10.032

    Article  CAS  Google Scholar 

  54. Chakraborty S, Chowdhury S, Das Saha P (2011) Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydr Polym 86(4):1533–1541. https://doi.org/10.1016/j.carbpol.2011.06.058

    Article  CAS  Google Scholar 

  55. Liu R, Zhang B, Mei D, Zhang H, Liu J (2011) Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination 268(1–3):111–116. https://doi.org/10.1016/j.desal.2010.10.006

    Article  CAS  Google Scholar 

  56. Sargin İ, Ünlü N (2013) Insights into cationic methyl violet 6B dye–kaolinite interactions: kinetic, equilibrium and thermodynamic studies. Clay Miner 48(1):85–95

    Article  CAS  Google Scholar 

  57. Luo W-J, Gao Q, Wu X-L, Zhou C-G (2014) Removal of cationic dye (methylene blue) from aqueous solution by humic acid-modified expanded perlite: experiment and theory. Sep Sci Technol 49(15):2400–2411. https://doi.org/10.1080/01496395.2014.920395

    Article  CAS  Google Scholar 

  58. Li Y, Hu M, Du Y, Xiao H, McClements DJ (2011) Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads. Food Hydrocoll 25(1):122–130. https://doi.org/10.1016/j.foodhyd.2010.06.003

    Article  CAS  Google Scholar 

  59. Ge F, Ye H, Li M-M, Zhao B-X (2012) Efficient removal of cationic dyes from aqueous solution by polymer-modified magnetic nanoparticles. Chem Eng J 198–199:11–17. https://doi.org/10.1016/j.cej.2012.05.074

    Article  CAS  Google Scholar 

  60. Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343(2):463–473. https://doi.org/10.1016/j.jcis.2009.11.060

    Article  CAS  PubMed  Google Scholar 

  61. Rahchamani J, Mousavi HZ, Behzad M (2011) Adsorption of methyl violet from aqueous solution by polyacrylamide as an adsorbent: isotherm and kinetic studies. Desalination 267(2–3):256–260. https://doi.org/10.1016/j.desal.2010.09.036

    Article  CAS  Google Scholar 

  62. Doğan M, Özdemir Y, Alkan M (2007) Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes Pigm 75(3):701–713. https://doi.org/10.1016/j.dyepig.2006.07.023

    Article  CAS  Google Scholar 

  63. Doğan M, Alkan M (2003) Adsorption kinetics of methyl violet onto perlite. Chemosphere 50(4):517–528. https://doi.org/10.1016/S0045-6535(02)00629-X

    Article  PubMed  Google Scholar 

  64. Ghorai S, Sarkar AK, Panda AB, Pal S (2013) Effective removal of congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresour Technol 144:485–491. https://doi.org/10.1016/j.biortech.2013.06.108

    Article  CAS  PubMed  Google Scholar 

  65. Allen SJ, McKay G, Khader KYH (1989) Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat. Environ Pollut 56(1):39–50. https://doi.org/10.1016/0269-7491(89)90120-6

    Article  CAS  PubMed  Google Scholar 

  66. Elass K, Laachach A, Alaoui A, Azzi M (2011) Removal of methyl violet from aqueous solution using a stevensite-rich clay from Morocco. Appl Clay Sci 54(1):90–96. https://doi.org/10.1016/j.clay.2011.07.019

    Article  CAS  Google Scholar 

  67. Saeed A, Sharif M, Iqbal M (2010) Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. J Hazard Mater 179(1–3):564–572. https://doi.org/10.1016/j.jhazmat.2010.03.041

    Article  CAS  PubMed  Google Scholar 

  68. Dai M (1998) Mechanism of adsorption for dyes on activated carbon. J Colloid Interface Sci 198(1):6–10. https://doi.org/10.1006/jcis.1997.5254

    Article  CAS  Google Scholar 

  69. Azizian S, Haerifar M, Bashiri H (2009) Adsorption of methyl violet onto granular activated carbon: equilibrium, kinetics and modeling. Chem Eng J 146(1):36–41. https://doi.org/10.1016/j.cej.2008.05.024

    Article  CAS  Google Scholar 

  70. Mall ID, Srivastava VC, Agarwal NK (2006) Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ash-kinetic study and equilibrium isotherm analyses. Dyes Pigm 69(3):210–223. https://doi.org/10.1016/j.dyepig.2005.03.013

    Article  CAS  Google Scholar 

  71. Özdemir Y, Doğan M, Alkan M (2006) Adsorption of cationic dyes from aqueous solutions by sepiolite. Microporous Mesoporous Mater 96(1–3):419–427. https://doi.org/10.1016/j.micromeso.2006.07.026

    Article  CAS  Google Scholar 

  72. Annadurai G, Juang RS, Lee DJ (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater 92(3):263–274

    Article  CAS  Google Scholar 

  73. Xu S, Wang J, Wu R, Wang J, Li H (2006) Adsorption behaviors of acid and basic dyes on crosslinked amphoteric starch. Chem Eng J 117(2):161–167. https://doi.org/10.1016/j.cej.2005.12.012

    Article  CAS  Google Scholar 

  74. Ghasemi M, Mashhadi S, Asif M, Tyagi I, Agarwal S, Gupta VK (2016) Microwave-assisted synthesis of tetraethylenepentamine functionalized activated carbon with high adsorption capacity for malachite green dye. J Mol Liq 213:317–325. https://doi.org/10.1016/j.molliq.2015.09.048

    Article  CAS  Google Scholar 

  75. Wang XS, Li ZZ, Tao SR (2009) Removal of chromium (VI) from aqueous solution using walnut hull. J Environ Manage 90(2):721–729. https://doi.org/10.1016/j.jenvman.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  76. Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W (2003) Removal of PCBs from wastewater using fly ash. Chemosphere 53(6):655–665. https://doi.org/10.1016/S0045-6535(03)00517-4

    Article  CAS  PubMed  Google Scholar 

  77. Blackburn RS (2004) Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. Environ Sci Technol 38(18):4905–4909. https://doi.org/10.1021/es049972n

    Article  CAS  PubMed  Google Scholar 

  78. Parker HL, Hunt AJ, Budarin VL, Shuttleworth PS, Miller KL, Clark JH (2012) The importance of being porous: polysaccharide-derived mesoporous materials for use in dye adsorption. RSC Adv 2(24):8992–8997

    Article  CAS  Google Scholar 

  79. Abramian L, El-Rassy H (2009) Adsorption kinetics and thermodynamics of azo-dye orange II onto highly porous titania aerogel. Chem Eng J 150(2–3):403–410. https://doi.org/10.1016/j.cej.2009.01.019

    Article  CAS  Google Scholar 

  80. Garde JA, CatalÁ R, Gavara R, Hernandez RJ (2001) Characterizing the migration of antioxidants from polypropylene into fatty food simulants. Food Addit Contam 18(8):750–762. https://doi.org/10.1080/02652030116713

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by The Petroleum Institute Research Center, Abu Dhabi, UAE (Grant Number LTR14013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Eskhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskhan, A., Banat, F., Selvaraj, M. et al. Enhanced removal of methyl violet 6B cationic dye from aqueous solutions using calcium alginate hydrogel grafted with poly (styrene-co-maleic anhydride). Polym. Bull. 76, 175–203 (2019). https://doi.org/10.1007/s00289-018-2378-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2378-y

Keywords

Navigation