Skip to main content
Log in

Polyurethane network using 1-naphthylamine embedded epoxy-based polymer: ferric ion selective fluorescent probe

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

A Correction to this article was published on 02 September 2020

This article has been updated

Abstract

Polyurethane network 1 was prepared through curing of epoxy-based polymer bearing 1-naphthylamine units with tolylene-2,4-diisocyanate as curing agent. With ferric ions, the network was found to exhibit selective ON–OFF-type fluorescence signaling behavior even in the presence of other representative metal ions such as Na+, K+, Ag+, Cu2+, Zn2+, Co2+, Ni2+, Cd2+, Hg2+, Mg2+, Sr2+, Pb2+ and Ca2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 02 September 2020

    This erratum corrects the legends of Figure 3 (Inset) of the published paper. The results presented in the published paper are correct and are not affected by the change in legends of Figure 3 (inset).

References

  1. Sie YW, Wan CF, Wu AT (2017) A multifunctional Schiff base fluorescence sensor for Hg2+, Cu2+ and Co2+ ions. RSC Adv 7:2460–2465

    Article  CAS  Google Scholar 

  2. Neupane LN, Oh ET, Park HJ, Lee KH (2016) Selective and sensitive detection of heavy metal ions in 100% aqueous solution and cells with a fluorescence chemosensor based on peptide using aggregation-induced emission. Anal Chem 88:3333–3340

    Article  CAS  Google Scholar 

  3. Bai L, Tou LJ, Gao Q, Bose P, Zhao Y (2016) Remarkable colorimetric sensing of heavy metal ions based on thiol-rich nanoframes. Chem Commun 52:13691–13694

    Article  CAS  Google Scholar 

  4. Yoon S, Miller EW, He Q, Do PH, Chang CJ (2007) A bright and specific fluorescent sensor for mercury in water, cells, and tissue. Angew Chem Int Ed 46:6658–6661

    Article  CAS  Google Scholar 

  5. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  Google Scholar 

  6. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108:3443–3480

    Article  CAS  Google Scholar 

  7. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    Article  CAS  Google Scholar 

  8. Li M, Gou H, Ogaidi IA, Wu N (2013) Nanostructured sensors for detection of heavy metals: a review. ACS Sustain Chem Eng 1:713–723

    Article  Google Scholar 

  9. Leitch HA, Fibach E, Rachmilewitz E (2017) Toxicity of iron overload and iron overload reduction in the setting of hematopoietic stem cell transplantation for hematologic malignancies. Crit Rev Oncol Hematol 113:156–170 (references therein)

    Article  Google Scholar 

  10. Huang J, Xu Y, Qian X (2014) Rhodamine-based fluorescent off/on sensor for Fe3+ in aqueous solution and in living cells: 8-aminoquinoline receptor and 2:1 binding. Dalton Trans 43:5983–5989

    Article  CAS  Google Scholar 

  11. Huang L, Hou F, Cheng J, Xi P, Chen F, Bai D, Zeng Z (2012) Selective off–on fluorescent chemosensor for detection of Fe3+ ions in aqueous media. Org Biomol Chem 10:9634–9638 (references therein)

    Article  CAS  Google Scholar 

  12. Galaris D, Skiada V, Barbouti A (2008) Redox signaling and cancer: the role of “labile” iron. Cancer Lett 266:21–29

    Article  CAS  Google Scholar 

  13. Ong WY, Farooqui AA (2005) Iron, neuroinflammation, and Alzheimer’s disease. J Alzheimers Dis 8:183–200

    Article  CAS  Google Scholar 

  14. Hirayama T, Nagasawa H (2017) Chemical tools for detecting Fe ions. J Clin Biochem Nutr 60:39–48 (references therein)

    Article  CAS  Google Scholar 

  15. Cardona MA, Mallia CJ, Baisch U, Magri DC (2016) Water-soluble amino(ethanesulfonate) and [bis(ethanesulfonate)] anthracenes as fluorescent photoinduced electron transfer (PET) pH indicators and Fe3+ chemosensors. RSC Adv 6:3783–3791

    Article  CAS  Google Scholar 

  16. Sahoo SK, Sharma D, Bera RK, Crisponic G, Callan JF (2012) Iron(III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev 41:7195–7227 (references therein)

    Article  CAS  Google Scholar 

  17. Huang L, Hou F, Cheng J, Xi P, Chen F, Bai D, Zeng Z (2012) Selective off–on fluorescent chemosensor for detection of Fe3+ ions in aqueous media. Org Biomol Chem 10:9634–9638

    Article  CAS  Google Scholar 

  18. Wang R, Yu RF, Liu P, Chen L (2012) A turn-on fluorescent probe based on hydroxylamineoxidation for detecting ferric ion selectively in living cells. Chem Commun 48:5310–5312

    Article  CAS  Google Scholar 

  19. Yao JN, Dou W, Liu WS (2009) A new coumarin-based chemosensor for Fe3+ in water. Inorg Chem Commun 12:116–118

    Article  CAS  Google Scholar 

  20. Jung HJ, Singh N, Jang DO (2008) Highly Fe3+ selective ratiometric fluorescent probe based on imine-linked benzimidazole. Tetrahedron Lett 49:2960–2964

    Article  CAS  Google Scholar 

  21. Mao J, Wang LN, Dou W, Tang XL, Yan Y, Liu WS (2007) Tuning the selectivity of two chemosensors to Fe(III) and Cr(III). Org Lett 9:4567–4570

    Article  CAS  Google Scholar 

  22. Xiang Y, Tong A (2006) A new rhodamine-based chemosensor exhibiting selective FeIII-amplified fluorescence. Org Lett 8:1549–1552

    Article  CAS  Google Scholar 

  23. Bricks JL, Kovalchuk A, Trieflinger C, Nofz M, Büschel M, Tolmachev AI, Daub J, Rurack K (2005) On the development of sensor molecules that display Fe(III)-amplified fluorescence. J Am Chem Soc 127:13522–13529

    Article  CAS  Google Scholar 

  24. Hua J, Wang TG (2005) A highly selective and sensitive fluorescent chemosensor for Fe3+ in physiological aqueous solution. Chem Lett 34:98–99

    Article  CAS  Google Scholar 

  25. Anthony SP (2012) Polymorph-dependent solid-state fluorescence and selective metal-ion-sensor properties of 2-(2-Hydroxyphenyl)-4(3H)-quinazolinone. Chem Asian J 7:374–379

    Article  CAS  Google Scholar 

  26. Lin WY, Long LL, Yuan L, Cao ZM, Feng JB (2009) A novel ratiometric fluorescent Fe3+ sensor based on a phenanthroimidazole chromophore. Anal Chim Acta 634:262–266

    Article  CAS  Google Scholar 

  27. Ji X, Yao Y, Li J, Yan X, Huang F (2013) A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing. J Am Chem Soc 135:74–77

    Article  CAS  Google Scholar 

  28. Liou GS, Lin SM, Yen HJ (2008) Synthesis and photoluminescence properties of novel polyarylates bearing pendent naphthylamine chromophores. Eur Polym J 44:2608–2618

    Article  CAS  Google Scholar 

  29. Ghosh S, Dey CK, Manna R (2010) Epoxy-based polymer bearing 1-naphthylamine units: highly selective fluorescent chemosensor for ferric ion. Tetrahedron Lett 51:3177–3180

    Article  CAS  Google Scholar 

  30. Ghosh S, Manna R (2011) Epoxy-based oligomer containing dithia-aza-based naphthylazobenzene pendant: a chemosensor for Hg2+ and Cu2+ ions. Supramol Chem 23:558–562

    Article  CAS  Google Scholar 

  31. Ghosh S, Dey CK (2014) Epoxy based polymer bearing activated 3-arylazopyridine unit as a chromogenic probe of Hg2 + Ion. J Macromol Sci Pure Appl Chem Part-A 51:217–222

    Article  CAS  Google Scholar 

  32. Ghosh S, Manna R (2014) Epoxy-based polymer bearing triphenylamine units: a highly selective fluorescent chemosensor for Hg2+ ions. RSC Adv 4:5798–5802

    Article  CAS  Google Scholar 

  33. Lohani CR, Lee KH (2010) The effect of absorbance of Fe3+ on the detection of Fe3+ by fluorescent chemical sensors. Sens Actuators, B 143:649–654

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaresh Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Manna, R. & Dey, S. Polyurethane network using 1-naphthylamine embedded epoxy-based polymer: ferric ion selective fluorescent probe. Polym. Bull. 76, 205–213 (2019). https://doi.org/10.1007/s00289-018-2374-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2374-2

Keywords

Navigation